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Abstract.  
The determination of economic nitrogen levels is a pivotal element in the quest for sustainable 
agricultural practices. Designing experiments to accurately identify these levels, especially in 
contexts constrained by limited plot availability, poses a significant challenge. In response to these 
challenges, this study endeavors to demonstrate an approach to optimize the experimental design 
for identifying economic nitrogen levels, even under such constraints. We employed statistical 
techniques, including parametric bootstrapping and Monte Carlo simulations, to rigorously test 
various experimental designs. The primary criterion guiding our evaluation was to identify the 
experimental design that exhibited the lowest variance. This focus on minimizing variance is 
crucial, as it ensures greater reliability and reproducibility of the results, ultimately leading to more 
accurate determinations of economic nitrogen levels. Our methodology provided insightful results, 
demonstrating that certain experimental layouts significantly enhance the accuracy and efficiency 
of nitrogen level experiments. The superiority of these designs was evident in their ability to 
consistently produce results with lower variance compared to other tested layouts. This is 
particularly valuable in contexts where resources and land for extensive experimental setups are 
scarce. This research not only presents a framework for more informed decision-making in 
agricultural experimental design but also showcases the potential for wider applications of 
simulation-based methodologies in agronomic research. The methods we employed can be 
adapted for various studies, including those focusing on optimal nitrogen application and site-
specific fertilizer utilization. The implications of our findings are substantial for the agricultural 
sector. By enabling more precise and efficient nitrogen management, our approach contributes 
to better crop yields, reduced environmental impact, and optimized resource utilization. In a 
broader context, this aligns with global goals for sustainability and food security. Our study thus 
offers a valuable contribution to the field of agricultural research, presenting a solution to a long-
standing problem and paving the way for future advancements in sustainable farming practices. 
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Introduction 
Identifying the economic optimal nitrogen rate (EONR) is crucial for sustainable agriculture, 
aiming to maximize crop yields while minimizing environmental impact. Field experiments are 
instrumental in determining the precise nutrient application needed, helping stakeholders pinpoint 
the most cost-effective rates (Meyer-Aurich et al., 2010; Poursina et al., 2024). These trials are 
key to the customized management of agricultural inputs, enhancing farm-level efficiency and 
sustainability, and ultimately improving economic returns. 
Nevertheless, the ideal configuration of these trials is a subject of ongoing debate, especially 
concerning economic factors such as the choice of treatment levels—referred to as 'design 
points'—their spatial distribution, and the required number of repetitions to ensure statistical 
robustness and cost-efficiency (Poursina & Brorsen, 2023; Poursina et al., 2024). To tackle these 
issues, researchers are increasingly employing Optimal Experimental Design (OED) techniques, 
which involve carefully selecting design points and their repetitions to enhance the efficiency and 
economic feasibility of experiments (Bachmaier, 2012; Büchse et al., 2022; Ng’ombe & Brorsen, 
2022; Piepho et al., 2011; Poursina et al., 2023). 
However, the advantages of OED depend heavily on the accuracy of the underlying model 
assumptions. Incorrect assumptions can lead to inefficient and economically suboptimal 
experiments (Alhorn et al., 2021). Therefore, refining model accuracy is essential, and 
experimental data is vital in this process. Models that are inaccurate may need adjustments, 
whether by adopting more complex or simpler structures, to improve their predictive capabilities. 
The objective is to design experiments that yield informative data, facilitating precise model 
evaluations (Tarantola, 2005). 
For non-linear systems, OED has shown considerable benefits over traditional Design of 
Experiments (DoE). In these contexts, OED can more effectively reduce parameter variance, 
making it an essential tool in fields where precise parameter estimation is crucial (Franceschini & 
Macchietto, 2008). However, because OED relies on the Fisher Information Matrix (FIM), it can 
sometimes miss the effects of model non-linearities. Other methods like Monte Carlo simulations 
can address these gaps (Moles et al., 2003; Sin et al., 2009). 
Monte Carlo simulations provide a comprehensive framework for managing the uncertainties and 
complexities of non-linear models. They offer a more precise method for quantifying parameter 
uncertainty compared to traditional linear approaches by considering the full range of variability 
in experimental data (López C et al., 2015; Moles et al., 2003). This method is particularly 
advantageous in agricultural research, where the dynamic and intricate nature of biological 
systems often defies simpler analytical techniques. 
In this research, we aim to refine the experimental design for determining EONR using Monte 
Carlo simulations. By concentrating on variance reduction, we aim to enhance the reliability and 
reproducibility of the results. Our approach involves evaluating various experimental designs 
under constrained conditions and assessing their ability to produce low-variance outcomes. This 
emphasis on variance reduction is critical, as it directly influences the accuracy and efficiency of 
nitrogen application trials. 
The findings from this research highlight that specific experimental configurations can greatly 
improve the precision of nitrogen management practices, even with limited resources. This has 
significant implications for the agricultural sector, potentially leading to increased crop yields, 
lower environmental impacts, and better resource utilization. Our methodology not only offers a 
framework for more informed decisions in agricultural experimental design but also demonstrates 
the broader applicability of simulation-based methods in agronomic research. 
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Methodology 

Problem Formulation  
In our context, optimal design involves selecting a design parameter 𝜉 that maximizes the 
expected utility of an experiment. The model for the experiment is defined by the 
distribution 𝑝(𝑦|𝛽, 𝜉), where 𝑦 represents the observable data, and 𝛽 denotes the unknown 
parameters. The prior distribution for 𝛽 is 𝑝(𝛽) and the utility function 𝑈(𝑦, 𝛽, 𝜉) quantifies 
the benefit of the outcomes. Our primary goal is to minimize the variance of the estimated EONR. 
The expected utility is expressed as: 

       𝐸[𝑈(𝜉)] = ∫𝑈(𝑦, 𝛽, 𝜉)𝑝(𝑦|𝛽, 𝜉)𝑝(𝛽)𝑑𝑦𝑑𝛽	                                      (1) 

Reparameterizing Models for EONR Estimation 
To incorporate EONR directly into our analysis, we reparameterized four commonly used yield 
response functions: quadratic, quadratic plateau, Mitscherlich, and linear plateau. This 
reparameterization ensures that EONR can be directly estimated within each model. 
 
Mitscherlich Model: 

                    𝑓(𝑁) = 𝛽! + (𝛽" − 𝛽!)𝑒#$!%                                    (2) 

 
Reparameterized as: 

                 𝑓(𝑁) = 𝛽! + (−
&

'$!("#!$%&'(
)𝑒#$!%                           (3) 

 
 
Quadratic Model: 

                   	
 𝑓(𝑁) = 𝛽! + 𝛽"𝑁 + 𝛽)𝑁)                                           (4) 

 
Reparameterized as: 

                  	
𝑓(𝑁) = 𝛽! + 0

&
'
− 2𝛽)𝐸𝑂𝑁𝑅*5𝑁 + 𝛽)𝑁)                                (5) 

Quadratic Plateau Model:  

                     	

            𝑓(𝑁) = 6 𝛽! + 𝛽"𝑁 + 𝛽)𝑁), 𝑖𝑓	𝑁 < 	𝑁∗

𝛽! + 𝛽"𝑁∗ + 𝛽)(𝑁∗)), 𝑖𝑓	𝑁 ≥ 	𝑁∗                                    (6) 

 
Reparameterized as: 

                  	

𝑓(𝑁) = :
𝛽! + 0

&
'
− 2𝛽)𝐸𝑂𝑁𝑅*5𝑁 + 𝛽)𝑁), 𝑖𝑓	𝑁 < 	𝑁∗

𝛽! + 0
&
'
− 2𝛽)𝐸𝑂𝑁𝑅*5𝑁∗ + 𝛽)(𝑁∗)), 𝑖𝑓	𝑁 ≥ 	𝑁∗

                               (7) 
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Linear Plateau Model: 

                     	

𝑓(𝑁) = 6 𝛽! + 𝛽"𝑁, 𝑖𝑓	𝑁 < 	𝑁∗

𝛽! + 𝛽"𝑁∗, 𝑖𝑓	𝑁 ≥ 	𝑁∗                                    (8) 

 
Reparameterized as: 

                  	

𝑓(𝑁) = 6 𝛽! + 𝛽"𝑁, 𝑖𝑓	𝑁 < 	𝐸𝑂𝑁𝑅,-
𝛽! + 𝛽"𝐸𝑂𝑁𝑅,- , 𝑖𝑓	𝑁 ≥ 	𝐸𝑂𝑁𝑅,-

                           (9) 

 

Model Averaging 
Given the uncertainty in identifying the most accurate yield response model, we adopted a model 
averaging approach. This technique synthesizes predictions from multiple models to produce a 
more robust and reliable estimate of yield. 
The average model is expressed as: 

𝑓(𝑁) = 𝑤) *𝛽* + *
+
,
− 2𝛽-𝐸𝑂𝑁𝑅.1𝑁 + 𝛽-𝑁-1 + 𝑤/ 2𝛽* + (−

𝑟
𝑝𝛽2𝑒

−𝛽2𝐸𝑂𝑁𝑅𝑀
)𝑒−𝛽2𝑁3 +

				𝑤), 5
𝛽* + *

+
,
− 2𝛽-𝐸𝑂𝑁𝑅.01𝑁 + 𝛽-𝑁-, 𝑖𝑓	𝑁 < 	𝑁∗

𝛽* + *
+
,
− 2𝛽-𝐸𝑂𝑁𝑅.01𝑁∗ + 𝛽-(𝑁∗)-, 𝑖𝑓	𝑁 ≥ 	𝑁∗

: +𝑤2, 2
𝛽* + 𝛽3𝑁, 𝑖𝑓	𝑁 < 	𝐸𝑂𝑁𝑅40

𝛽* + 𝛽3𝐸𝑂𝑁𝑅40, 𝑖𝑓	𝑁 ≥ 	𝐸𝑂𝑁𝑅40
3       (10) 

 

Simulation Strategies 
Monte Carlo simulations 

We generated synthetic data using Monte Carlo simulations. The parameters for these 
simulations were estimated from an analysis of real-world agricultural data obtained from an N 
application experiment conducted in a completely randomized block design at the Sieblerfeld test 
field (5 ha) in Upper Bavaria, Germany. This experiment provided a dataset from which we 
extracted valuable insights by fitting reparameterized functions. For a detailed exposition of the 
experimental setup, readers are referred to (Bachmaier & Gandorfer, 2009). 
Markov Chain Monte Carlo (MCMC) 

Markov Chain Monte Carlo (MCMC) methods were employed to generate samples from the 
synthetic data distributions. This approach is essential for accurately estimating the parameters 
and expected utility, even when direct sampling of the posterior distribution is challenging due to 
its complexity. The expected utility is approximated using: 

 𝐸1[𝑈(𝜉)] = '
(
∑ 𝑈(𝑦, 𝛽) , 𝜉)(
)*'  (11) 

Where 𝛽) are samples from the posterior distribution obtained via MCMC. 
Augmented Probability Models 

Augmented Probability Models (APMs) are used to facilitate efficient sampling and estimation in 
complex Bayesian models. By introducing auxiliary variables or extending the parameter space, 
APMs help in managing the computational complexity and improving the convergence of MCMC 
methods. In our study, we defined an augmented joint distribution 𝑝(𝜉, 𝑦, 𝛽, 𝜂) where 𝜂 represents 
the auxiliary variables. 

1- Model Augmentation: 



Proceedings of the 16th International Conference on Precision Agriculture 
21-24 July, 2024, Manhattan, Kansas, United States  

5 

• Extend the parameter space to include additional latent variables 𝜂 o capture 
unobserved variability in yield response. 

• Define the augmented joint distribution 𝑝(𝜉, 𝑦, 𝛽, 𝜂) such that it simplifies the sampling 
process. 

2- Sampling: 
• Use MCMC to generate samples from the augmented joint distribution. 
• This approach improves the efficiency and accuracy of sampling by accounting for the 

auxiliary variables. 
3- Marginalization: 

• Integrate out the auxiliary variables 𝜂	to obtain the marginal distribution of the original 
parameters and design variables. 

• This step ensures that the results align with the original problem formulation. 
Simulated Annealing 

To address the challenge of high-dimensional expected utility surfaces, we applied a simulated 
annealing approach. The high dimensionality in this context arises from the complex, multi-
layered structure of the average model, which combines multiple yield response functions, each 
with its own set of parameters. Additionally, the experimental design includes multiple plots and 
nitrogen levels, further increasing the dimensionality. Simulated annealing iteratively adjusts the 
nitrogen levels to focus sampling on regions with higher expected utility, facilitating the 
identification of the optimal design. Here’s how it works in the context of our study: 

1- Initialization: Start with an initial experimental design, characterized by a set of nitrogen 
levels. 

2- Control Variable (Temperature): Begin with a high value for the control variable 𝑇. This 
variable governs the probability of accepting suboptimal solutions during the optimization 
process, allowing the algorithm to explore a wide range of design configurations. 

3- Design Adjustment: Generate new candidate designs by making small adjustments to the 
nitrogen levels in the current design. 

4- Utility Evaluation: Compute the expected utility for each candidate design using the 
reparameterized and averaged yield response models. The utility function is designed to 
minimize the variance of the EONR estimates. 

5- Acceptance Probability: Accept or reject the new design based on its utility. Even if a new 
design has a higher variance (lower utility), it might still be accepted to avoid getting 
trapped in local optima. The acceptance probability is given by: 

 𝑃(𝑎𝑐𝑐𝑒𝑝𝑡) = exp	 =+∆-
.
>  (12) 

where ∆𝑈 is the change in utility and 𝑇 is the current value of the control variable. 

6- Cooling Schedule: Gradually reduce the control variable 𝑇 according to a predefined 
schedule, focusing the search on refining the best designs found. 

7- Convergence Check: Continue the process until the control variable 𝑇 is sufficiently low 
and the design parameters stabilize, indicating that the optimal or near-optimal design has 
been found. 

Experimental Setup 

We considered a limited number of plots, specifically 120 plots, to optimize our experimental 
setup. We generated designs with 4, 5, 6, 8, and 10 levels of nitrogen from a design space varying 
between 0 and 300 kg N/ha, creating a variety of experimental configurations to identify the 
optimal design. 
Implementation 

Our methodology was implemented using PyMC3, a Python library for Bayesian statistical 
modeling. The simulation steps were as follows: 

1- Model Specification: Define the probabilistic model and utility function. 
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2- Sampling: Generate synthetic data samples using Monte Carlo simulations and use 
MCMC for sampling from the synthetic distributions. 

3- Utility Calculation: Compute the utility for each sampled design using the reparameterized 
and averaged model. 

4- Optimization: Apply simulated annealing to find the design that maximizes the expected 
utility while minimizing the variance of EONR. 

Results and discussion 
The results of our simulations highlight the effectiveness of selecting optimal nitrogen levels in 
reducing the variance of EONR. For the design with 4 nitrogen rates, the optimal levels were 
found to be 10, 175, 211, and 285 kg N/ha (Figure 1). These levels showed significantly lower 
variances compared to other levels within the design space. When increasing the number of 
nitrogen rates to 5, the levels 20, 70, 210, 220, and 275 kg N/ha also resulted in lower variances 
within the design space. 
For the design featuring 6 nitrogen rates, the optimal levels were identified as 50, 60, 172, 187, 
225, and 267 kg N/ha, achieving notably low variances. Similarly, the designs with 8 nitrogen 
rates (29, 68, 93, 136, 154, 159, 172, and 255 kg N/ha) and 10 nitrogen rates (39, 56, 62, 113, 
163, 208, 216, 226, 234, and 243 kg N/ha) showed that the optimal levels maintained lower 
variances compared to the rest of the design space. 
It is essential to highlight that the limits set for the design space, which in our case ranged from 0 
to 300 kg N/ha, should be carefully chosen to reflect environmentally sound practices. These 
limits should not be arbitrary; they must be derived from an understanding of the ecological 
consequences of excessive nitrogen use, including nutrient runoff that can lead to eutrophication 
and the degradation of water quality (Sharpley et al., 1987). Ensuring that the experimental 
designs adhere to environmentally sustainable nitrogen levels is crucial for the broader application 
of these findings in practical farming scenarios. 

 

 
Fig 1. Utility (Variance of EONR) Across the Design Space with Optimal Nitrogen Levels. 
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The results of our study provide valuable insights for agricultural researchers and practitioners, 
particularly in contexts where resources and land for experimental setups are limited. By using 
this approach, it is possible to pinpoint the best designs that minimize the variance of EONR, 
thereby enhancing the accuracy and efficiency of nitrogen management practices. Our findings 
are consistent with the studies by Gilmour and Trinca (2012) and Pannell (1997), who emphasized 
the critical role of managing variance in agricultural experiments. The superior performance of the 
identified optimal levels in reducing variance aligns with global goals for sustainability and food 
security, as it enables more precise and efficient nitrogen management. 
Our analysis demonstrates the critical role of selecting optimal nitrogen levels to minimize the 
variance of EONR, particularly under constraints of limited plot availability. While our results are 
based on a simulation approach, practical application is essential to fully understand the real-
world applicability of these findings. This study offers a robust framework for improving the 
accuracy of nitrogen management practices in agriculture. By enabling more precise and efficient 
nitrogen management, our approach contributes to better crop yields, reduced environmental 
impact, and optimized resource utilization, aligning with global sustainability goals. 

Conclusion  
Determining economic nitrogen levels is crucial for sustainable agricultural practices, especially 
in contexts with limited plot availability. This study demonstrated an approach to optimize 
experimental designs for identifying these levels by employing statistical techniques, including 
parametric bootstrapping and Monte Carlo simulations. Our primary goal was to identify designs 
that minimized the variance of EONR estimates, ensuring greater reliability and reproducibility. 
Our results showed that certain experimental layouts significantly enhance the accuracy and 
efficiency of nitrogen level experiments by consistently producing lower variances. This is 
particularly valuable in resource-constrained settings. The methodology provides a framework for 
more informed decision-making in agricultural experimental design and has potential applications 
in various studies focusing on optimal nitrogen application and site-specific fertilizer utilization. 
By enabling more precise and efficient nitrogen management, our approach contributes to better 
crop yields, reduced environmental impact, and optimized resource utilization. This aligns with 
global goals for sustainability and food security, offering a valuable contribution to agricultural 
research and paving the way for future advancements in sustainable farming practices. 
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