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Abstract.  
To promote the adoption of precision farming technology (PF), we developed a cost-effective 
Unmanned Ground Vehicle (UGV) called the Reduction-To-Below-Two grand (R2B2). In this 
paper, we present an initial study of the R2B2 system in which two types of imaging sensors are 
compared. The first one is Arducam's AR0234 which uses a global shutter camera (GSC) 
technology, while the other one is Arducam’s IMX462 which uses a rolling shutter camera 
(RSC) technology. Since the cost of the AR0234 is approximately three times the price of the 
IMX462, we made a comparison based on the detection accuracy achieved by a YOLOv8 
model to determine the possibility of using the latter for pattern detection in place of the former, 
hence reducing the total cost of the R2B2-UGV. To compare the effect of varying speeds of the 
R2B2-UGV (0.75 m/s, 1.00 m/s, 1.25 m/s, and 1.50 m/s), illumination incident on the surface of 
the target (100 Lux, 650 Lux, and 1250 Lux), and terrain conditions (smooth and undulating) on 
the accuracy of detecting four classes of patterns (ArUco markers) by a trained YOLOv8 model, 
we designed an indoor 4 × 3 × 2 factorial experiment with three replications. In this experiment, 
we deployed a custom YOLOv8 model on two Raspberry Pi 4 units (one for each camera) 
mounted on the R2B2-UGV to detect four classes of patterns. Results showed that the average 
detection accuracies of the model while using the GSC-AR0234 and the RSC-IMX462 were 
84.7 % and 70.1 %, respectively. Further investigations revealed that illumination and camera 
shutter type had a statistically significant effect (𝑝 < 	0.05) on the accuracy of the model. This 
result was expected due to the wide-angle lens and shutter mechanism of the RSC-IMX462 that 
introduced distortions to the target. However, we can improve the accuracy of the RSC-IMX462 
using image processing techniques like edge detection algorithms. If the expected outcome 
proves true, we can further justify the R2B2 project by reducing the cost of developing an 
autonomous UGV capable of machine vision (MV) applications using RSCs. Findings from this 
experiment could influence the design considerations of current and future producers of 
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commercial UGVs capable of PF operations and result in a reduced price of purchasing and 
maintaining UGVs, hence driving the adoption of PF technology by small-scale farmers. Future 
work will include MV applications such as in-row navigation based on semantic segmentation 
and plant disease detection using the RSC and an edge-computing device. 
Keywords.   
Rolling Shutter, Global Shutter, Machine Vision, YOLOv8, Pattern Recognition, Mobile Robots 

Introduction 
Precision farming (PF) has been highlighted as the way forward to meet the increasing demand 
for food production (Devkota et al., 2020), projected to rise by 50% in 2050 due to an estimated 
global population of 9 billion (FAO & ITU, 2018; USDA, 2023). However, there has been 
resistance to the adoption of PF technology, especially among small-scale farmers (SSFs). This 
resistance is partly attributed to the costs associated with obtaining and maintaining PF 
equipment, such as unmanned ground vehicles (UGVs), and some concerns related to return on 
investment (ROI) (USDA, 2023). A significant factor influencing the cost of commercially available 
UGVs capable of performing PF tasks are the components of these UGVs, including perception 
and data collection components like cameras and LiDAR sensors. Optimally selecting these 
components such that they are both cost-effective and efficient is a way to reduce the cost of 
developing UGVs, which will reflect their shelf price. 
Rolling shutter cameras (RSC), which are relatively less expensive than their global shutter 
counterparts, capture images by sequentially scanning targets row-by-row from top to bottom 
(Fan et al., 2021). When capturing images in motion, this mechanism of scanning row-by-row 
results in skew-like distortions known as the rolling shutter effect and it becomes more profound 
with increased motion speed (Ait-Aider et al., 2006; Lao et al., 2018). However, the rolling shutter 
effect may not be substantial in agricultural machine vision applications which generally requires 
ground robots to move at lower speeds. 
A review was conducted to determine the methods researchers used in the past to perform 
comparisons between different cameras, the targets used, and some application areas of global 
shutter cameras (GSCs) and RSCs. In a study by Holešovský et al. (2021), an experimental 
comparison was performed between an event camera and a GSC to determine the application 
domain in which the former performs better than the latter. Similar to our approach, their first 
method involved testing the cameras on simple pattern recognition tasks. The task required 
detecting printed 3 x 3 mm fiducial markers (Figure 1) attached to a rotating disk with varying 
speeds in a controlled illumination environment, using an intensity reconstruction method called 
E2VID. 
 

.  
Figure 1: Fiducial markers (Garrido-Jurado et al., 2014) 

Barrios-Avilés et al. (2018) compared an event-based camera (EBC) and a frame-based camera 
(FBC) in a task to track a moving object under varying lighting conditions. The experiment was 
conducted to determine the response time and robustness of both the EBC and the FBC to varying 
lighting conditions while tracking the moving object, and the results showed that the EBC was 
more stable under changing lighting conditions compared to the FBC. We adopted a part of this 
experiment to assess the robustness of the GSC and the RSC to varying lighting conditions. 
In this study, we sought to address a gap in existing research, which primarily focused on 
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comparing event-based and frame-based cameras for object tracking and movement detection. 
A literature review revealed that minimal experimental work has been conducted to evaluate the 
performance of GSCs and RSCs in machine vision applications. Drawing upon methodologies 
from previous studies, we designed an experiment to observe the effect of the GSC-AR0234 and 
the RSC-IMX462 shutter types (ArduCam; Shanghai, China) under varying conditions on the 
accuracy of a custom YOLOv8 model in a pattern detection task (Jocher et al., 2023). The primary 
objective was to assess the feasibility of utilizing the more cost-effective RSC-IMX462, priced at 
one-third of the GSC-AR0234 at the time of purchase, for machine vision applications in 
agriculture. This investigation represents a significant stride toward the goal of the Reduction-To-
Below-Two grand (R2B2) project by Kemeshi et al. (2024), which aims to facilitate the adoption 
of UGVs by SSFs in the US through cost reduction. 

Materials and Methods 

Experiment Site 
The experiment was conducted within a semi-controlled environment situated at the Raven 
Precision Agriculture Center, South Dakota State University, Brookings, South Dakota, USA.  

Object Detection Model 
At the time of preparing this document, You Only Look Once version 8 (YOLO v8) was the latest 
version of the YOLO series of algorithms. This version is popular for its fast object detection 
capabilities, including detection speed and accuracy.  
For this experiment, a comprehensive dataset consisting of 1354 images was preprocessed to 
size 640 × 640 in concordance with the requirement for training a YOLOv8 model. The dataset, 
which included four types of ArUco markers, underwent annotation utilizing Roboflow's web-
based annotation tool as detailed in Table 1 (Dwyer et al., 2024). Following annotation, the labeled 
dataset was utilized to train a custom YOLOv8 model on Google Colab using the T4 GPU. Upon 
successful completion of the training process, the model achieved a mean average precision at 
50% recall (mAP50) of 0.945 and mAP50-95 of 0.887 for all classes. Table 2 shows more details 
of the validation result. Subsequently, the customized YOLOv8 model was deployed onto two 
Raspberry Pi 4 units (Model B, Raspberry Pi Foundation, Cambridge, United Kingdom) for further 
experiments. 

Table 1: Details of annotation using Roboflow 
Annotation Classes Train Set Validation Set Test Set 

Images 974 272 135 
Class 1 370 105 49 
Class 2 350 107 50 
Class 3 362 105 46 
Class 4 381 91 53 

 

Table 2: Validation results of the custom YOLOv8 model 
Class mAP50 mAP50-90 

All  0.945 0.877 
Class 1 0.928 0.842 
Class 2 0.941 0.882 
Class 3 0.972 0.908 
Class 4 0.939 0.877 

Target/ Ground Truth Data 
The ground truth data comprises a target consisting of 6 ArUco markers, each measuring 77 × 
77 mm. These makers were randomly selected from a pool of eight ArUco markers of four classes, 
as shown in Figure 2. The target itself is presented as an A4 print, incorporating two class 1 
markers, one class 2 marker, two class 3 markers, and one class 4 marker. 
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Figure 2: 77 × 77 mm ArUco markers (Target) 

UGV Platform and Experimental Design 
In this experiment, we mounted two Raspberry Pi 4 units on the R2B2-UGV, enabling 
simultaneous control of the GSC-AR0234 and the RSC-IMX462 via a secure shell. The 
experiment followed an indoor 4 × 3 × 2 factorial design with three replications, as detailed in 
Table 3. We examined the effect of varying speeds of the R2B2-UGV (0.75 m/s, 1 m/s, 1.25 m/s, 
and 1.50 m/s), illumination incident on the surface of the target (100 Lux, 650 Lux, and 1250 Lux), 
and terrain conditions (smooth and undulating) on the model's accuracy to detect four classes of 
patterns, namely ArUco markers. An external lighting source with three levels was used to control 
the light incident on the target's surface (Xbuyee 300W LED light, Shanghai, China), and 
illuminance levels were measured using a digital lux meter (AP-881D, AOPUTTRIVER, China). 
The terrain conditions were simulated by placing four wood blocks (19.05 × 38.1 × 1219.2 mm; 
H×W×L) at 482.6 mm intervals to create an undulating ground. The UGV's speed was pre-set in 
the navigation code to achieve the required speed levels. Figure 3 provides a visual 
representation of the experimental setup and materials. 

Table 3: Combination of factors for each treatment 
Treatment Combination of Factors 

1 0.75 m/s, smooth, 100 Lux 
2 0.75 m/s, smooth, 650 Lux 
3 0.75 m/s, smooth, 1250 Lux 
4 0.75 m/s, undulating, 100 Lux 
5 0.75 m/s, undulating, 650 Lux 
6 0.75 m/s, undulating, 1250 Lux 
7 1.00 m/s, smooth, 100 Lux 
8 1.00 m/s, smooth, 650 Lux 
9 1.00 m/s, smooth, 1250 Lux 

10 1.00 m/s, undulating, 100 Lux 
11 1.00 m/s, undulating, 650 Lux 
12 1.00 m/s, undulating, 1250 Lux 
13 1.25 m/s, smooth, 100 Lux 
14 1.25 m/s, smooth, 650 Lux 
15 1.25 m/s, smooth, 1250 Lux 
16 1.25 m/s, undulating, 100 Lux 
17 1.25 m/s, undulating, 650 Lux 
18 1.25 m/s, undulating, 1250 Lux 
19 1.50 m/s, smooth, 100 Lux 
20 1.50 m/s, smooth, 650 Lux 
21 1.50 m/s, smooth, 1250 Lux 
22 1.50 m/s, undulating, 100 Lux 
23 1.50 m/s, undulating, 650 Lux 
24 1.50 m/s, undulating, 1250 Lux 
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Figure 3: Experiment setup 

 

Data Extraction 
To calculate the average detection accuracy for each treatment, only frames containing complete 
target information were taken into consideration. The detection accuracy for these frames was 
computed using Equation 1 and subsequently added to an excel file for further analysis. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 	 !"##$%&	($&$%&)"*+
,-.$%&$(	/$&$%&)"*+

	𝑥	100                                                (1) 

Results and Discussion 
A custom YOLOv8 model was deployed onto two Raspberry Pi 4 units and used in a pattern 
detection task. Employing two cameras simultaneously, we assessed the impact of each camera's 
shutter type on the model's accuracy with varying environmental conditions. Figure 4 shows two 
frames captured by each camera from the same treatment. Notably, the fisheye effect stemming 
from the wide-angle lens of the RSC-IMX462 was evident.  

 
Figure 4: Frame from GSC-AR0234 (a) and RSC-IMX462 (b) 

Figure 5 presents a scatter plot diagram illustrating the average accuracies of the model across 
all 72 runs (3 replicates of 24 treatments) for both cameras. The plot indicates that the GSC-
AR0234 performed better than RSC-IMX462, and this was affirmed by a Mann-Whitney U-test 



Proceedings of the 16th International Conference on Precision Agriculture 
21-24 July, 2024, Manhattan, Kansas, United States  

6 

(MacFarland & Yates, 2016) conducted to ascertain the statistically significant difference in the 
accuracies of the cameras, subsequent to confirming the non-normal distribution of the data 
through a Shapiro-Wilk test. This outcome aligns logically with the notion that the fisheye effect 
of the RSC-IMX462 could be a major factor contributing to the diminished accuracy of the model. 
Overall, the model demonstrated average detection accuracy of 84.7% and 70.1% with the GSC-
AR0234 and RSC-IMX462, respectively. 
 

 
Figure 5: Scatterplot for accuracy distribution for both GSC-AR0234 and RSC-IMX462 

Furthermore, the dataset of the GSC-AR0234 underwent a Box-Cox transformation to achieve a 
normal distribution as shown in Figure 6. The box plot in Figure 7 shows the average accuracy 
across all replicates for each treatment. A trend can be observed showing that with higher 
illuminance, there is a significant improvement in the model's performance. This observation was 
backed up by a 3-factor ANOVA (speed, illumination, and terrain), which was conducted to 
compare these factors and identify the primary contributors to the models' accuracy (Table 4). 
The results revealed that the illumination condition had a significant effect (𝑝 < 0.05)  on the 
accuracy, which is logical, considering that the motion of the UGV was not fast enough to cause 
any blurring effect on the target, and the vibration caused by the rough terrain was not frequent 
enough to create distortions in each frame. 

 
(a) Left-skewed distribution 

 
(b) Normalized distribution 

Figure 6: Visualization of the distribution of GSC-AR0234 dataset 
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Figure 7: Boxplot of accuracy distribution over three replications for GSC-AR0234  

 

Table 4: 3-factor ANOVA  
 Df Sum Sq Mean Sq F value Pr (>F)  

Speed 3	 74.6 24.9 1.386	 0.162	  
Illumination 2	 850.7 425.4 23.713	 6.88x10!"	 *** 

Terrain 1	 42.2 42.2 2.350	 0.132	  
Speed* Illumination 6	 68.6 11.4 0.637	 0.700	  

Speed* Terrain 3	 35.6 11.9 0.662	 0.580	  
Illumination* Terrain 2	 1.5 0.7 0.041	 0.960	  

Speed* Illumination* Terrain 6	 193.2 32.2 1.795	 0.120	  
Residuals 48	 861.0 17.9    

 
Lastly, we performed Tukey's multiple comparison test to compare the treatments (Table 5). The 
results show that treatments with lower speeds, rough terrain, and high illuminance showed better 
performance (Treatments 6 and 12). A possible cause for this is that the simulated rough terrain 
reduced the speed of the R2B2-UGV, and this aided the model's performance. Additionally, the 
results indicated that the treatments of low illuminance showed low performance (Treatments 10 
and 13). 

Table 5: Treatment Grouping Based on Tukey’s Test for GSC-AR0234 
Treatment(s)  Group 

6 a 
12 b 

2-5, 7-9, 11, 13-18, 20-24 abc 
1 and 19 bc 

10 and 13 c 

 
Notably, for the RSC-IMX462, the accuracy could be substantially improved by image processing 
techniques, such as fisheye distortion correction algorithms (Wei et al., 2012; Zhang et al., 2016). 

Conclusion 
In this study, we assessed the impact of camera shutter mechanisms on the accuracy of a 
customized YOLOv8 model for pattern recognition in diverse environmental conditions. 
Simultaneously utilizing global shutter and rolling shutter cameras, we investigated whether a 
statistically significant difference existed in their effects on the model's accuracy. Results indicated 
an average detection accuracy of 84.7% and 70.1% for the GSC-AR0234 and the RSC-IMX462, 
respectively. Our future efforts will focus on enhancing the accuracy of the model with the rolling 
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shutter camera by implementing fisheye distortion correction algorithms. Successful 
implementation of these correction algorithms could pave the way for the cost-effective integration 
of rolling shutter cameras, which are generally more budget-friendly than global shutter cameras, 
in pattern recognition and tracking applications. This project is promising for the cost-effectiveness 
of autonomous navigation in mobile robots. Ultimately, reducing the overall development costs of 
autonomous UGVs supports the justification of the R2B2 project. Such cost reductions could lead 
to increased adoption of UGVs among the SSFs. 
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