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Abstract. Artificial intelligence, particularly deep learning, offers promising avenues for 
revolutionizing object detection and counting in digital agriculture. Peanut farmers face challenges 
in precisely determining optimal maturity for digging, traditionally relying on the Peanut Maturity 
Index (PMI) through a manual, subjective, and labor-intensive classification process. To expedite 
this and reduce subjectivity, we explored deep learning algorithms to develop a digital peanut 
profile board. Our study utilized data from a 54.76-hectare commercial irrigated peanut field in 
Eufaula, Alabama, during the 2022 growing season. Weekly peanut biomass samples were 
collected from 20 locations at five time points (97, 118, 125, 132, and 139 Days After Sowing or 
DAS), and manual maturity assessments were performed using the hull-scrape method and 
profile board, resulting in 100 images with around 20,000 objects. We combined brown and black 
pods into one class and employed the algorithm for object detection and counting, using 
RoboFlow for data labeling and dataset creation. Model training was conducted in Google Colab 
using transfer learning, partitioning the dataset into 70% training, 10% testing, and 20% validation. 
The model, trained for 50 epochs, achieved an mAP50 of 0.97 and an mAP50-95 of 0.726. These 
results demonstrate the successful application of deep learning in detecting and counting peanut 
pods across different color classes, substantiating the feasibility of a digital peanut profile board. 
Our research highlights the transformative potential of deep learning in digital agriculture, offering 
greater precision, reduced subjectivity, and improved decision-making for peanut farmers. This 
innovation marks a significant step forward in agricultural technology. 
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Introduction 
Determining when peanuts have reached maturity is challenging due to their growth underground 
and their indeterminate growth patterns (Sanders et al., 1980). The Hull–Scrape method is widely 
used by researchers and growers (Williams and Drexler 1981). However, it is laborious and highly 
subjective, requiring extensive sampling due to peanut variability in the field (Ashapure et al., 
2019). This method involves classifying maturity levels based on mesocarp color from field 
samples, in recent years, researchers have been developing alternative solutions to modernize 
this method, making it more efficient and reducing human error (Souza et al., 2023). 
Recent advancements in deep learning, particularly the development of sophisticated neural 
networks, have enabled modern approaches to predicting the peanut maturity index by integrating 
satellite and unmanned aircraft images (Souza et al., 2023). Methods include using high-
resolution satellite images and non-linear models (Santos et al., 2021), high-resolution satellite 
images and multitarget regression (Oliveira et al., 2024), and UAV data to develop neural network 
models for both irrigated and rainfed fields (Santos et al., 2021). To enable the development of 
large-scale models for peanut farmers, it is necessary to increase the number of maturity samples 
collected from fields. This will help create robust models capable of predicting maturity across 
various varieties and growing conditions. To achieve this goal, we propose accelerating color 
classification and reducing the subjectivity of the PMI classification by developing a digital peanut 
profile board. This solution could facilitate the development of large-scale models and provide 
farmers with a new method for generating the PMI using images and mobile devices. 
The continuous advancements in visual sensor technology, computational capabilities, and data-
driven machine learning methodologies have catalyzed a burgeoning interest in digital agricultural 
technologies, particularly in the development of automated and intelligent systems (Zhao et al., 
2024). The adoption of deep learning-based computer vision applications, such as object 
recognition techniques, has surged in agriculture. This growth is largely attributed to the 
decreasing costs of hardware (e.g., cameras, storage, and computational systems) and the 
enhanced computational power available in recent years (Liu et al., 2023; Tian et al., 2023). 
Object detection plays a crucial role in digital agriculture, enhancing precision farming by 
minimizing labor and costs, optimizing resource use, and ultimately boosting agricultural 
productivity and yield (Badgujar et al., 2024). The selection of an algorithm for agricultural tasks 
often prioritizes high speed (near real-time), accuracy, and compact model size, making the one-
stage detector You Only Look Once (YOLO, Redmon et al., 2016) increasingly popular for its real-
time capabilities, good accuracy, and suitability for resource-constrained devices. We posit that 
YOLO presents a feasible approach for detecting peanut maturity, offering a practical and efficient 
alternative to manual peanut maturity classification. While various techniques exist to estimate 
peanut maturity, a notable research gap remains: no one-stage detector has been developed that 
can effectively predict peanut maturity using mobile phone images. Based on this rationale, the 
objective of this research was to train, validate, and test a one-stage object detector, and to deploy 
the model on a web application capable of detecting and identifying peanuts, as well as classifying 
them to generate the Peanut Maturity Index (PMI). 

Material and Methods 

Sites description 

We used data from three commercial peanut fields in Alabama from the 2022 and 2023 
seasons. Images of the peanut profile board were collected throughout the season, from the 
beginning of maturation to one day before harvest (Table 1). 
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Table 1. Sampling date and study areas information. 

Field Sampling date Variety Number of photos 

1 08/19/22,08/24/22, 
09/09/22,09/16/22,09/25/22 

Georgia-O6G 118 

2 09/18/23,08/24/23,09/04/23 Georgia-O6G 59 
3 09/28/23, 09/12/23,08/25/23 Georgia-O6G 53 

Dataset  
The dataset was split into training, validation, and test sets. The images were taken using mobile 
phones with the aid of artificial light. Photos were captured above the peanut profile board after 
the manual classification of the pods (Figure 1). 

 
Fig 1. Photo of a peanut profile board after classification. Pods sorted by color class according to maturity level, with 

mature pods categorized in the black class. 

Pods are classified on six classes (white, yellow 1, yellow 2, orange, brown and black class). After 
the classification it is possible to calculate the peanut maturity index (equation 1). 

𝑃𝑀𝐼 =
𝑁_𝑏𝑏𝑝
𝑇_𝑝

 

Where, PMI is the peanut maturity index considering brown to black classes, 𝑁_𝑏𝑏𝑝 is the number 
of pods in the brown and black classes and 𝑇_𝑝 is the total number of pods among the six classes. 
We aim to develop a model capable of generalizing the PMI based on the image of the profile 
board. The board has six classes, but changing the PMI formula, we can transform these six 
classes into two. To calculate the PMI, we combined the six classes into one class called “wo,” 
which includes pods from white, yellow 1, yellow 2, and orange, and another class called “bb,” 
which includes pods from brown and black. Based on this, we can represent the classification of 
the model to calculate the PMI as follows: 

𝑃𝑀𝐼 =
𝑁_𝑏𝑏

𝑁_𝑏𝑏 + 𝑁_𝑤𝑜
 

Where, PMI is the peanut maturity index considering brown to black classes, 𝑁_𝑏𝑏 is the number 
of pods in the brown and black classes and 𝑁_𝑤𝑜𝑝 is the total number of pods among the white, 
yellow 1, yellow 2, orange, brown and black classes. 
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After acquiring the images, each pod in each image was annotated using the Roboflow labeling 
web platform (Dwyer et al., 2024). A total of 232 images were collected and the dataset was split 
into training (70%), validation (20%), and test (10%) sets. The training data was augmented by 
rotating the images 90 degrees clockwise, counterclockwise, and upside down, as well as by 
applying up to 1px blur and adding noise to up to 0.5% of pixels. This procedure increased the 
dataset to 483 images for training, 47 images for validation, and 24 images for testing the 
algorithm. 

YOLOv9 
Object detection techniques are often categorized into one-stage and two-stage methods. Notable 
examples of one-stage methods include YOLO (You Only Look Once) (Terven et al., 2023) and 
SSD (Single Shot MultiBox Detector) (Liu et al., 2016). These techniques predict bounding boxes 
and class labels simultaneously in a single pass through the neural network, which enhances their 
inference speed by eliminating the region proposal step (Vo et al., 2024). YOLOv9 represents a 
significant leap forward in real-time object detection technology (Wang et al., 2024). Released in 
February 2024, this version of YOLO incorporates innovative techniques like the Generalized 
Efficient Layer Aggregation Network (GELAN).  
Generalized Efficient Layer Aggregation Network – GELAN:  GELAN is an innovative architectural 
enhancement that integrates concepts from CSPNet (Cross Stage Partial Network) and ELAN 
(Efficient Layer Aggregation Network). This lightweight network architecture is constructed around 
gradient path planning, which enables efficient aggregation of information across layers. By 
focusing on a lightweight design, rapid inference, and accuracy, GELAN effectively addresses the 
information bottleneck problem. This results in increased efficiency and accuracy for real-time 
object detection (Vo et al., 2024). The structure of GELAN within YOLOv9 is illustrated in Fig. 2. 
We used the algorithm YOLOv9 with GELAN enchancement to further support real time 
application of the model. 
 

 
Fig 2. The architecture of GELAN within YOLOv9 (Wang et al., 2024). 

Implamentation  
The entire framework was developed using the Ultralytics library, with the YOLO model 
implemented on a Python platform. The system was operated on a GoogleColab environment, 
with the free computational resources available. The input resolution was 640 x 640 pixels after 
resizing and batch size was set to four. Data augmentation techniques included rotating images 
by 90° in different directions (clockwise, counter-clockwise, upside down), applying up to 1px blur, 
and adding noise to up to 0.5% of pixels. These augmentations aimed to enhance model 
robustness by simulating various real-world conditions. The model was trained for 50 epochs. 
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Performance evaluation 
The evaluation utilized standard metrics from MS COCO (Lin et al., 2014). Performance of the 
YOLOv9 model was assessed using mAP@0.50 and mAP@0.95, along with parameters count 
and GFLOPs, impacting inference speed directly. Precision-recall curves were employed to 
assess each data acquisition setting, where precision (Eq. (1)), recall (Eq. (2)), and mAP (Eq. (3)) 
at IoU of 0.50 (mAP@0.50) were computed.  

𝑃 = 	
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

𝑅 =	
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝑚𝐴𝑃 =	
1
𝑘
4 𝐴𝑃𝑖

!

"#$
 

where P is precision, TP is true positive, FP is false positive, R is recall, FN is false negative, AP 
is average precision, mAP is mean average precision. 
 

Results  
The train loss curve, showed a steady decrease from 1.09 to 0.87 by the end of 50 epochs, 
indicating the model's improvement in minimizing prediction errors. Precision and recall metrics, 
shown in Figure 1, improved from 0.82368 to 0.95914 and from 0.83312 to 0.95576, respectively, 
highlighting the model's growing capability to accurately detect and classify peanut pods. 
Additionally, the model's performance was evaluated using Mean Average Precision (mAP) at 
two different thresholds: mAP50 and mAP50-95. After 50 epochs, the model achieved an mAP50 
of 0.97033 and an mAP50-95 of 0.72491, as depicted in Figure 3, indicating high precision and 
consistency in detecting objects across various levels of peanut maturity. These results 
demonstrate that the YOLOv9 model, enhanced with the Generalized Efficient Layer Aggregation 
Network (GELAN), effectively learns and improves its performance over time, validating its 
robustness and potential for accurate peanut maturity classification. 

 
Fig 3. Training and validation metrics of YOLOv9-Gelan-C. 

The model underwent rigorous training, and its performance metrics were recorded. The 
evaluation focused on key metrics such as precision, recall, and mean average precision (mAP) 
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for both 50% and 50-95% thresholds. Table 2 provides a comprehensive overview of these 
metrics across different classes of the validation dataset. The model achieved a high precision of 
0.954 and recall of 0.966 across all classes (ALL). This indicates that the model is highly accurate 
in correctly identifying peanut pods while maintaining a low rate of false negatives. For the brown 
and black (BB) class, which is critical for assessing peanut maturity, the model achieved even 
higher precision (0.967) and a slightly lower recall (0.958). The mAP50 of 0.974 and mAP50-95 
of 0.695 underscore the model's excellent performance in detecting mature peanut pods, crucial 
for determining the optimal harvesting time. The white, yellow, and orange (WO) class also 
showed robust performance, with a precision of 0.941 and a recall of 0.973. The mAP50 of 0.966 
and mAP50-95 of 0.757 indicate that the model effectively distinguishes less mature pods, 
contributing to a comprehensive maturity assessment. The overall mean average precision 
(mAP50) of 0.97 and mAP50-95 of 0.726 across all classes demonstrate the model's high 
accuracy and reliability. These metrics reflect the model's ability to maintain consistent 
performance across different levels of peanut maturity. 
Table 2. Performance metrics for validation dataset during the training of the algorithm, 

Class Images Instances Precision Recall MAP50 MAP50-95 

ALL 47 8194 0.954 0.966 0.97 0.726 

BB 47 4913 0.967 0.958 0.974 0.695 

WO 47 3281 0.941 0.973 0.966 0.757 

The confusion matrix demonstrates the performance of the YOLOv9 model in classifying peanut 
maturity indices. The model achieves high accuracy with 97% of 'bb' (brown black) and 98% of 
'wo' (white to orange) peanuts correctly classified. However, there is a notable confusion, with 
55% of 'bb' misclassified and 45% of 'wo' misclassified as background, indicating the need for 
further refinement (Figure 4). 

 
Fig 4. Confusion Matrix of YOLOv9 Model for Peanut Maturity Classification. 
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Performance analysis of the YOLOv9 model was done by comparing the predicted Peanut 
Maturity Index (PMI) with the observed PMI for the test dataset (Figure 5). The graph offers a 
visual representation of the model's accuracy and the correlation between the predicted and 
actual maturity indices. The model demonstrates a strong correlation between the predicted PMI 
and the observed PMI, indicated by an R² value of 0.9962. This high R² value signifies that the 
model's predictions closely align with the actual maturity index, reflecting its reliability in practical 
applications. The linear trend observed in the scatter plot of Figure 5 indicates a consistent 
relationship between the predicted and observed PMI. This linearity reinforces the model's ability 
to maintain accuracy across different levels of peanut maturity. The uniform distribution of data 
points along the line of equality (where predicted PMI equals observed PMI) illustrates that the 
model performs effectively across the entire range of peanut maturity levels. This consistency is 
essential for ensuring reliable maturity assessments throughout the growing season. 

 
Fig 5. Performance analysis of test dataset comparing the predicted PMI based on YOLOv9 detection and observed PMI. 

Observation: MAE (mean absolute error) is expressed in percentage. 

In this study, we deployed the YOLOv9 object detection model on a web platform designed for 
real-time analysis of peanut maturity classification. Figure 6 (A) illustrates the integration of our 
model with the platform, showcasing its capability to accurately detect and classify peanut pods 
based on color. The second image visualizes the results of our YOLOv9 model, depicting 
bounding boxes overlaid on the peanut profile board, indicating successful localization and 
classification of peanut pods. Subsequently, the third image displays a peanut profile board 
segmented by color categories, demonstrating the initial input for our model. The deployed 
platform generates a dictionary with all the predications.  This integration underscores the 
effectiveness of YOLOv9 in automating the classification process, enhancing efficiency and 
accuracy in detecting and classifying the pods. 
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Fig 3. Integration of YOLOv9 object detection model with peanut pod classification: web platform deployment (A), 

Bounding Box Visualization (B) and original photo (C) 
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Conclusion 

Our findings demonstrated a promising alternative to predict multiple Peanut Maturity Indices 
(PMI) at a field scale using the YOLOv9 model enhanced with the Generalized Efficient Layer 
Aggregation Network (GELAN). This approach significantly reduces the subjectivity associated 
with traditional methods of determining peanut maturity. The high precision and recall metrics 
across different maturity classes highlight the model's robustness in accurately classifying peanut 
pods, providing a reliable tool for farmers and researchers. Another promising outcome is the 
strong correlation between the predicted and observed PMI values, with an R² value of 0.9962 
and a mean absolute error (MAE) of 0.0111%. Future research should focus on expanding the 
applicability of the YOLOv9 model enhanced with the Generalized Efficient Layer Aggregation 
Network (GELAN) across diverse peanut varieties and varying field conditions to ensure its 
robustness and generalizability. Additionally, integrating this model with real-time monitoring 
systems and mobile applications could provide farmers with instant feedback, facilitating timely 
decision-making in peanut cultivation. 
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