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ABSTRACT 
Leaf chlorophyll concentration (LCC) detection is crucial for monitoring crop physiological 
status, assessing the overall health of crops, and estimating their photosynthetic potential. Fast, 
non-destructive, and spatially extensive monitoring of LCC in crops is critical for accurately 
diagnosing and assessing crop health in large commercial fields. Advancements in 
hyperspectral remote sensing offer non-destructive and spatially extensive alternatives for 
monitoring plant parameters such as LCC. However, the LCC prediction model may vary from 
one crop to another due to differences in structural and physiological properties. The wild 
blueberry crop has diverse genotypes grown in semi-natural systems, making precision 
management difficult. Here, we aimed to test the performance of the remote LCC detection 
models in wild blueberries using machine learning (ML). Hyperspectral data ranging from 
400nm-1000nm were collected using an unmanned aerial vehicle (UAV) from two adjacent 
irrigated and non-irrigated commercial fields covering different growth stages. LCC indicated by 
SPAD values were collected using the SPAD-502 Chlorophyll meter at the field site and then 
converted to LCC values using SPAD to LCC conversion models. In the preliminary data 
analysis of the UAV-based hyperspectral data for LCC prediction, different ML techniques were 
used. While previous research has used ML and ensembles for similar tasks, this research 
focused on using various preprocessing techniques to attempt to create more learnable features 
from the data that could be used in ensemble structures. The dimensionality of the dataset was 
reduced using Non-negative Matrix Factorization (NMF) and Gaussian Mixture Model (GMM) 
methods. Thirty-four different chlorophyll vegetation indices were feature-engineered to create 
an additional dataset for the ensemble structure. Various ML models were implemented, 
splitting the data into 80/20 for training and testing. The best single learning model was an 
ElasticNet regression trained on a GMM dataset with a coefficient of determination (R2) of 0.79 
and a normalized root mean square error (nRMSE) of 3.48 %. PyTorch was used to combine six 
base models and differently preprocessed datasets into an optimal weights meta-learner 
architecture that achieved a better performance of an R2 of 0.89 and a nRMSE of 2.53%. Work 
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is ongoing on developing a neural vegetation index (NVI) that searches for wavelengths in the 
space ratio of linear functions of reflectance to automate the process of index development. 
During training, a neural network searches the space of functions that minimizes a given loss 
function. The general framework of NVI could also work across species and different nutrients. 
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INTRODUCTION 
 
The quantification of leaf chlorophyll concentration (LCC) holds significant importance for 
agricultural practices, as it enables the continuous assessment of crop physiological status, 
determination of overall crop health, and estimation of photosynthetic potential (Gitelson et al., 
2003). This information is particularly valuable for monitoring large commercial fields, where rapid, 
non-destructive, and spatially extensive techniques are essential for accurate diagnosis and 
assessment. 
  
Although traditional methods of wet extraction analysis through field sampling provide accurate 
estimations of Leaf Chlorophyll Content (LCC), these methods are not always practical for 
estimating LCC over large areas of vegetation. However, non-destructive measurement of leaf 
spectral reflectance offers an instantaneous and alternative method for assessing the LCC of 
plants over a large spatial scale (Lu et al., 2018). This method involves measuring the light 
reflected by leaves, which varies according to the chlorophyll content (Lu et al., 2018; Zhang et 
al., 2014). By analyzing the spectral reflectance of the leaves, we can determine the LCC of the 
plants. This non-destructive approach can be particularly useful for quick, accurate, large-scale 
vegetation health evaluations.  
  
UAV (Unmanned aerial vehicle)- based hyperspectral remote sensing has emerged as a 
promising avenue for monitoring various plant parameters, including LCC, due to its non-
destructive nature and ability to cover large spatial extents (Hu et al., 2023). However, the 
challenge lies in developing LCC prediction models that can accommodate the inherent variability 
in structural and physiological properties across different crops. 
  
The wild blueberry crop has diverse genotypes grown in semi-natural systems (Barai et al., 2022), 
so implementing precision management becomes challenging. To address this challenge, we 
have investigated the application of machine learning (ML) techniques for UAV-based remote 
LCC detection in wild blueberries. The objective is to evaluate the performance of ML models in 
accurately predicting LCC, considering the unique characteristics and variability inherent in wild 
blueberry crops. This research endeavors to contribute to advancing remote sensing applications 
in agriculture, specifically in the context of wild blueberries, by enhancing the robustness and 
adaptability of LCC prediction models by utilizing machine learning methodologies. 
 

METHODS  
  
Study Site 
The study was conducted on commercial blueberry fields in Deblois, Maine (Longitude: -
68.0001° N, Latitude: 44.7350° W). These commercial crop fields contain many different 
genotypes of wild blueberry plants growing within a particular field. 
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UAV-based Hyperspectral Data Collection and Ground Sampling 
The hyperspectral image acquisitions and ground measurements were conducted one time in the 
summer of 2019 and three times in 2022 and 2023, covering different developmental stages within 
large commercial blueberry fields. Image acquisition and field ground data collection dates were 
carried out on sunny days. A total of 30 genotypes (15 in each field) in 2019 (crop year), and 40 
genotypes (20 in each field) were systematically selected in 2022 (vegetative growth year) and 
2023 (crop year) to cover the entire field and a wide range of genotypes based on morphological 
differences. Six wild blueberry stems were randomly selected from each genotype area to 
measure chlorophyll content. LCC indicated by SPAD values were collected using the SPAD-502 
chlorophyll meter (Konica Minota Inc., Japan) at the field site and then converted to LCC 
(µg/cm2) values using the SPAD to LCC conversion model following Zhu et al. (2012). 
  
We used a Headwall Photonics Micro A-Series Sensor (Bolton, MA, USA) hyperspectral imaging 
spectrometer attached to a DJI Matrice 600 Pro UAV for data collection. Data collection was 
conducted between 12:00 PM ± 2 hours local time. The sensor captured 324 spectral bands 
uniformly distributed between 400 to 1000 nm in the visible and near-infrared electromagnetic 
spectrum. After processing the imagery with the Headwall Spectral View application, we used 
ENVI software (version 5.5 64-bit) to identify and extract pixels of ground-sampled genotypes. 
These delineations were used as samples in both training and validation data sets. All 
downstream analyses were performed in Python. 
Preliminary data analysis and preprocessing 

  

  
Figure 1: Left to right top first: (a) raw reflectances (b) Savitzky-Golay smoothed reflectances (c) univariate spline 
reflectances (d) Gaussian filter reflectances. 

 
To understand the nature of data collected we first visualized the reflectance data from the 
hyperspectral imaging spectrometer. Recall that we get 324 spectral bands for each genotype (30 
for 2019) data. We plotted the raw reflectance with wavelength on the x-axis and reflectance on 
the y-axis (Figure 1(a)). We observed that raw reflectance is noisy as neighboring wavelengths 
show fluctuations in the reflectance value. To remove noise, we tried 3 different methods of 
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smoothing as a pre-processing step, (1) Savitzky-Golay smoothing (2) Univariate Spline 
smoothing and (3) Gaussian filter smoothing. The corresponding results after smoothing are 
shown in Figure 1(b-d) respectively.  
We further observed that the visible wavelengths (400-700 nm) had much lower reflectance 
compared to the near-infrared wavelengths (700-1000 nm) (Figure 2). Within the visible spectrum, 
the green wavelength (~540 nm) had high reflectance, while the blue (~450 nm) and red (~670 
nm) regions had comparatively low reflectance. On the other hand, the near-infrared region (720-
1000 nm) had continuous high reflectance properties. 

 
Figure 2: Left: Mean reflectances by period. Right: reflectances by irrigation status. 

Model Development 

In the preliminary data analysis of the UAV-borne hyperspectral imagery for LCC prediction, 
different ML techniques were used, using Scikit-Learn in Python. Splitting the data into 80/20 for 
training and testing, we utilized various machine-learning methods such as kernel ridge 
regression (KRR), ElasticNet, and XGBoost. We additionally used partial least square regression 
(PLSR). PLSR is a form of regularized linear regression where the number of components 
controls the strength of the regularization, which is suitable for predictors with high collinearity. 
Kernel ridge regression (KRR) combines ridge regression (linear least squares with 12-norm 
regularization) by learning a linear/ non-linear function in the space induced by the respective 
kernel and the data. Elastic net regression aims to select the predictor variables most important 
for predicting the target variable while using regularization to avoid overfitting the model. XGBoost 
is a decision-tree-based ensemble algorithm that uses gradient boosting and hardware 
optimizations to produce quick, accurate results for regression, classification, ranking, and time 
series tasks. 
While previous research has used ML and ensembles for similar tasks, this research focused on 
using various preprocessing techniques to attempt to create more learnable features from the 
data that could be used in ensemble structures. A general challenge of working with hyperspectral 
data is the collinearity of bands. The dimensionality of the dataset was reduced using Non-
negative Matrix Factorization (NMF) and Gaussian Mixture Model (GMM) methods. Thirty-four 
different chlorophyll vegetation indices were calculated to create an additional dataset for the 
ensemble structure. To tune utilized hyperparameters, Optuna, an automatic hyperparameter 
optimization software framework, was used to construct the search spaces for the 
hyperparameters dynamically. Finally, this study incorporated PyTorch to calculate the optimal 
combination of base learners. We first developed a rough estimate for a base learner coefficient 
and then used PyTorch and gradient descent to tune the optimal coefficients. We also explored 
the optimal wavelength bands for simple differences (RY1-R Y2), simple ratios (RY1/RY2), and 
normalized differences (|RY1-R Y2|/ (RY1-R Y2)).  
  
The MDATT Index is the ratio of reflectance differences, defined as 
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𝑀𝐷𝐴𝑇𝑇𝐼𝑛𝑑𝑒𝑥 =
𝑅!" − 𝑅!#
𝑅!" − 𝑅!$

 

 calculate a few other simple two-band equations (see Appendix) that are searched to find the 
combination that produces the highest R2 (Lu, et al., 2018). 
We observed a similarity between MDATT Index and Neural networks. MDATT Index searches 
for wavelengths that are ratios of linear functions (specifically differences) of reflectance. Similarly, 
Neural networks are linear functions chained together interspersed with non-linearities. During 
training, a Neural network searches the space of functions that minimizes a given loss function. 
We designed a Neural Network that can be expressed as a ratio of two linear functions 
(technically, affine function) of reflectance to predict its target nutrient, 

𝑁𝑉𝐼(𝑹,𝒘, 𝒖) =
𝑤"𝑅%" +𝑤#𝑅%# +⋯+𝑤&𝑅%& +𝑤'
𝑢"𝑅%" + 𝑢#𝑅%# +⋯+ 𝑢&𝑅%& + 𝑢'

 

Here 𝒘 = [𝑤", 𝑤#, … , 𝑤&] and 𝒖 = [𝑢", 𝑢#, … , 𝑢&] are weights that will be optimized during training 
process. Note that the weights can take negative values as well, so they form a larger search 
space than MDATT Index. We use Stochastic Gradient Descent for optimization of the following 
loss function, 

𝐿(𝒘, 𝒖, θ) = ) *+𝑐! −𝑀𝐿𝑃"0𝑁𝑉𝐼(𝑹𝒊, 𝒘, 𝒖)5+*
$

%!,𝑹𝒊

+ λ|𝒘|( + λ|𝒖|(,	 

where 𝑐( is the observed chlorophyll content corresponding to the reflectance 𝑹𝒊 in the training 
dataset 𝒟. Also, 𝑀𝐿𝑃*(. ) denotes a multi-layer perceptron for regression. Note that we can use 
any other differentiable regressor than a 𝑀𝐿𝑃*(. ). The use of a differentiable regressor allows us 
to train the Neural vegetation index simultaneously with the 𝑀𝐿𝑃*(. ). In practice, we can use 
multi-dimensional NVI() that can feed as a vector into MLP(). In our experiments, we found that 
4-dimensional NVI() output provides a good trade-off between computation and accuracy. 
  

RESULTS: 
  
When investigating the correlation coefficients of the wavelengths to the LCC, it was found that 
there were various sensitive regions (Figure 2). The green wavelength region had high positive 
correlations, while the blue and red regions of the visible spectrum had low or negative 
correlations. Typically, green vegetation exhibits high reflectance in the visible green and near-
infrared regions (400-1000 nm) of the electromagnetic spectrum  . In contrast, the visible blue and 
red regions have high absorbance (Figure 2). 
Various ML models were implemented, such as PLSR, ElasticNet, XGBoost, and KRR on the 
original dataset, vegetation indices (ensemble structure), and two-dimensionality reduction 
methods (GMM and NMF). The overall performance of the PLSR models was found 
unsatisfactory in all the datasets. The model performance was poor when utilizing the original 
unprocessed and ensemble indices datasets. The performance of the ML models on the GMM 
and NMF processed dataset (dimensionality reduced) was improved. The best single learning 
model was an ElasticNet regression with a coefficient of determination (R2) of 0.79 and a 
normalized root mean square error (nRMSE) of 3.48%, which was trained on the dataset reduced 
with the GMM dimensionality reduction method (Table 1). 
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Figure 4: Leaf chlorophyll concentration of wild blueberry plants (a) at different growth periods (b), under different irrigation 
status (irrigated or not), and (c) combined.  

 

Figure 3: Left to right: (a) MDATT Index correlation heatmap (b) ND Index correlation heatmap (c) SD Index 
correlation heatmap 
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Table 1: Results of Machine Learning Model Performance 
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Figure 5: Neural vegetation index weights w, obtained after optimization. 
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Figure 6: Neural vegetation index denominator weights, u, obtained after optimization. 

DISCUSSION 
  
In this study, advanced technologies such as machine learning and remote imaging spectroscopy 
were utilized to accurately predict the leaf chlorophyll concentration of genotypes in wild blueberry 
fields. We tested three different approaches: using all available spectral bands, selected 
vegetation indices, and dimensionality-reduced datasets as predictor variables. The findings 
showed that machine learning approaches outperformed PLSR when all spectral bands were 
used as input predictors. Moreover, using dimensionality reduction preprocessed data as input 
predictors further enhanced the ML model performance. Ultimately, the meta-learning model that 
combined the best-performing models achieved the highest level of predictive performance. 
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Upon analysis of the mean reflectance properties across various wavelengths, it was observed 
that the visible green and near-infrared regions of the electromagnetic spectrum tend to exhibit 
high reflectance. In contrast, the visible blue and red regions demonstrate high absorbance, which 
can be attributed to the absorption of light by chlorophyll in the visible range (Huete, 2004). 
Additionally, cellular structures such as cell walls and internal components are responsible for the 
strong reflectance in the NIR region (Huete, 2004). This also explains the high correlation pattern 
between LCC and wavelengths at different regions. 
  
Partial Least Squares Regression (PLSR) has gained popularity as a statistical technique to 
establish relationships between hyperspectral reflectance and various biochemical factors in 
plants. However, it is important to note that its performance may significantly vary across different 
plant species, regions, and growth environments. In some cases, PLSR may yield highly accurate 
predictions, while in others, its performance may be suboptimal due to factors such as spectral 
interference, signal noise, and variations in plant physiology (Fu et al., 2019). This might be the 
reason for the low performance of PLSR that we see in our study.  
The results of the machine learning models suggest the importance of dimensionality reduction 
to improve the high collinear hyperspectral data. Studies have found that selecting important 
bands for modeling through dimensionality reduction algorithms can lead to better model 
performance compared to using full-spectrum models (Wang et al., 2022). To enhance the 
performance of our model, we employed advanced techniques known as ensemble or meta-
learning. This involved combining multiple weaker learners to create a stronger one. By doing so, 
we were able to leverage the strengths of each individual learner and compensate for their 
weaknesses, resulting in a more accurate and reliable model. This process allowed us to achieve 
superior results compared to using a single strong learner, as the ensemble technique reduces 
the risk of overfitting and increases the stability of the model. Overall, the use of ensemble/meta-
learning proved to be a valuable strategy in improving our model's performance, which is parallel 
to some recent studies (Fu et al., 2019; Sterling & Di Rienzo, 2022). 
  
Though we found a satisfactory performance from our meta-learner model, its real-life application 
to monitor the field-level spatial heterogeneity of LCC for precision agriculture could be complex 
due to high computational need.  
Our proposed method of neural vegetation index achieves the highest validation R2 score of 0.76. 
During training, a neural network searches the space of functions that minimizes a given loss 
function. The general framework of NVI will also be tested across species and different nutrients. 
The optimal weights w and u are shown in Figure 5 and Figure 6. Note that weights focus on 
different parts of the spectrum but the weights for the infra-red spectrum are in general larger. 
Photosynthetically active radiation (400 -770nm) absorption by leaves depends on photosynthetic 
pigment concentrations such as chlorophyll, which can impact the efficiency of CO2 assimilation 
and primary production (Richardson et al., 2002). Accurate estimation of leaf chlorophyll content 
is required for monitoring vegetation stress, physiological conditions, and response to 
environmental factors (Croft et al., 2015). Integration of UAV-based remote sensing of 
hyperspectral data with machine learning shows promising results for estimating the spatial 
variability of leaf chlorophyll status. 
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