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Abstract.  
Plant stress phenotyping research has progressively addressed approaches for stress 
quantification. Deep learning techniques provide a means to develop objective and automated 
methods for identifying abiotic and biotic stress experienced in an uncontrolled environment by 
plants comparable to the traditional visual assessment conducted by an expert rater. This work 
demonstrates a computational pipeline capable of estimating the disease severity caused by 
southern corn leaf blight in images of field-grown maize plants compared to traditional practices 
involving visual assessment. We collected visible light (RGB) field images of maize leaves from 
lines susceptible and resistant to southern corn leaf blight and field severity scores representing 
an expert’s assessment of the overall infection of the maize lines. We implemented a multistage 
approach for maize leaf and disease detection among field images and the quantification of leaf 
tissue infected by southern corn leaf blight. The multistage approach addresses the 
quantification task by (i) training a neural network on manually annotated maize leaves present 
in the RGB images, (ii) training a neural network on manually annotated southern corn leaf 
blight lesions present in the RGB images, and (iii) utilizing the identified regions of the disease 
to determine the proportion of infection on the leaves. The first two stages of the approach 
involved training two semantic segmentation models, U-Net and DeepLabv3. The DeepLabv3 
model was observed to have the best leaf and lesion segmentation performance. The models 
achieved an average intersection over union value of 0.879 and 0.849 for the leaf and lesion 
segmentation tasks, respectively. The final stage of the pipeline estimated SCLB severity by 
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computing the proportion of SCLB lesion area to maize leaf area using the predictions of the 
previous stages. The DeepLabv3-DeepLabv3 integrated system achieved a correlation 
coefficient of 0.88 and 0.72 between the field severity scores collected over two field trials and 
estimated severity scores representing the infection rating of an RGB image with an individual 
leaf sampled from the plots that were graded by the rater. These results indicate that images of 
a single leaf sample provide consistent grading as would be done in the field for a plot of plants. 
This research could provide a decision support tool that utilizes high-throughput data to 
understand the plants' stress responses and improve the efficiency of disease management. 
 
Keywords.   
Computer vision, deep learning, DeepLabv3, U-Net, disease quantification, Southern Corn Leaf 
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Introduction 
Efficient identification of indicators of abiotic and biotic stresses experienced by plants is a 
prominent issue in agriculture. Crop losses are estimated to be $60 billion a year due to plant 
diseases, demonstrating the impact of biotic stresses on food security (Reddy, Sudarshana, 
Fuchs, Rao, & Thottappilly, 2009). These losses negatively affect the ability to meet the demand 
for increased agricultural productivity. Typically, infected plants are identified and scored based 
on visual inspection, which is subjective and time-consuming (Zhou, et al., 2020). Moreover, 
waiting for visible symptoms may result in the crops being too infected for recovery or may allow 
the spread of the disease to neighboring plants. Information that could aid in identifying and 
quantifying symptoms of infection among plants could be helpful for crop breeding to identify 
superior varieties that are more resistant, understand crop loss, and evaluate targeted treatment 
strategies (Bock, Barbedo, Del Ponte, Bohnenkamp, & Mahlein, 2020; Bock, Chiang, & Del Ponte, 
2022). Therefore, there is a need for an objective and consistent platform for quantifying disease 
severity in plants.  
State-of-the-art methods for plant stress phenotyping have progressed to imaging and remote-
sensing technologies combined with machine learning to capture observable characteristics 
resulting from its genotype interacting with the environment (Boggess, et al., 2013; Bock, et al., 
2021). Biotic stresses, such as southern corn leaf blight (SCLB), that have distinct visual 
characteristics are suitable subjects for image-based phenotyping studies. Southern corn leaf 
blight is a fungal disease caused by the pathogen Cochliobolus heterostrophus (anamorph, 
Bipolaris maydis) that produces necrotic lesions along the veins of the leaves (Bruns, 2017; 
Sermons & Balint-Kurti, 2018). While the disease favors a humid environment, its global presence 
contributes to substantial yield loss in corn-growing regions (Bruns, 2017; Kumar, et al., 2022).  
Identification and detection research in stress phenotyping involves data analysis to identify a 
particular stress when present and then to classify images based on stress patterns. Identification 
and detection research can be extended to quantification research by leveraging methods to 
utilize quantitative or qualitative traits (Singh, Ganapathysubramanian, Singh, & & Sarkar, 2016).  
Stress quantification encompasses the estimation of disease severity by detecting and quantifying 
one or more diseases in plants based on the analysis of the plant’s health. Disease severity can 
be defined as the measurement of plant disease expression based on disease symptoms 
experienced by a plant or plot (Bock, et al., 2021). Customarily, visual estimates of disease 
severity diagnosed by plant pathologists are represented on a nominal or ordinal scale (Bock, et 
al., 2021; Stevens, 1946; Bock, Chiang, & Del Ponte, 2022). However, attaining inter and intra-
rater reliability can be challenging due to lack of experience or training, scale type, symptoms, 
preference for specific severities, color blindness, the environment, and the rater’s speed (Bock, 
et al., 2021). Recent progress in machine learning for computer vision problems demonstrates 
the potential for greater accuracy, efficiency, and repeatability in image-based phenotyping. 
Prior work typically used thresholding to analyze visible light (RGB) images taken by a standard 
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or smartphone camera and estimated severity on a qualitative or quantitative ordinal scale. In 
simplified cases, studies have worked with data where a single leaf of interest is against a simple, 
contrasting background (Pethybridge & Nelson 2015, Manso et al. 2019, Sibiya & 
Sumbwanyambe 2019). For example, the work of Pethybridge and Nelson (2015) and Manso et 
al. (2019) resulted in a smartphone application that estimated the diseased area using 
thresholding as a form of image segmentation to separate objects/areas of interest based on pixel 
intensity. Their proposed approaches enabled user interaction, or a function-derived value based 
on the data, to detect diseased regions prior to quantification (Pethybridge & Nelson, 2015; 
Manso, Knidel, Krohling, & Ventura, 2019). However, the methods may find the severity 
estimation task difficult due to factors such as inconsistent lighting and varying noise levels on 
images captured in uncontrolled settings. 
Currently, studies have implemented supervised, deep learning algorithms built on convolutional 
neural networks (CNN) that learn from annotations to extract features for the classification of 
objects within the image or the entire image (Garg, Bhugra, & Lall, 2021; Wang, et al., 2021; 
Divyanth, Ahmad, & Saraswat, 2023). Garg, Bhugra, & Lall (2021), Wang et al. (2021), and 
Divyanth et al. (2023) implemented a two-stage, deep learning-based model to reliably distinguish 
leaves and lesions within field images. Garg, Bhugra, & Lall (2021) developed their two-stage 
model using the Cascaded MRCNN architecture to segment all corn leaf instances and northern 
leaf blight lesions in field images captured with an uncrewed aerial vehicle. The fused model 
consisting of the DeepLabv3+ and U-Net networks proposed by Wang et al. (2021) estimated the 
severity of cucumber downy mildew in images taken with a smartphone. Both models presented 
by Garg, Bhugra, & Lall (2021) and Wang et al. (2021) quantified the severity of a single disease. 
In contrast, Divyanth et al. (2023) applied their U-Net-DeepLabv3+ integrated model for multiple 
corn disease quantification. Garg, Bhugra, & Lall (2021) and Divyanth et al. (2023) reported a 
correlation coefficient of 0.73 and 0.96, respectively, between the estimated and ground truth 
ratios. Wang et al.’s method of disease severity estimation was assessed after binning the 
severity proportions into six classes and resulting in an accuracy greater than 90%. The results 
of these studies support the notion that a multistage approach built on semantic segmentation 
models to remove nuisance factors and identify objects of interest can aid in quantifying diseases. 
It is worth investigating how the information in images to estimate disease severity compares to 
the information available to a breeder during field trials. 
This study presents an image-based approach intended to (i) assess the performance of two 
state-of-the-art semantic segmentation models, U-Net and DeepLabv3, (ii) develop a deep 
learning-based integrated model for maize leaf segmentation and SCLB lesion segmentation, (iii) 
estimate the intensity of southern corn leaf blight symptoms in images of field-grown maize plants, 
and (iv) compare the estimated severity scores to traditional practices involving visual 
assessment. The main contributions of this study are: 
• An assessment of deep learning segmentation models for maize leaves and southern corn 

leaf blight lesions and the development of a multistage segmentation pipeline that achieved 
consistent segmentation results. 

• An objective method of disease severity grading for southern corn leaf blight by calculating 
the proportion of infected area to leaf area and mapping the proportion to a monotonically 
decreasing function. The mapped proportions enabled the comparison of the estimated 
values to field data based on visual assessment on the same scale. 

 

Materials and Methodology 

Data Acquisition 
The dataset used in this study was collected from field trials at the Central Crops Research Station 
in North Carolina during June to August in the 2019 and 2023 growing seasons. The inoculation 
and planting procedure of near-isogenic lines (NILs) of the maize inbred line B73 inoculated with 
Cochliobolus heterostrophus (anamorph, Bipolaris maydis) can be found in a protocol by Sermons 
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and Balint-Kurti (2018). After anthesis, a plant pathologist visually assessed the plants and 
recorded the degree of infection on a one to nine scale. A plant with a score of nine displayed no 
visual symptoms of the disease, whereas a score of one implies a dead plant (Sermons & Balint-
Kurti, 2018). Each field severity score represented the average degree of infection among all the 
plants within the plot. 
RGB images of leaf samples were taken with a NIKON D5600 digital camera or Samsung Galaxy 
S8 camera on or around the same day the plants were visually assessed. The original image 
sizes were 4000 by 6000 pixels with a 300-dpi resolution and 4032 by 3024 pixels with a 72-dpi 
resolution for the digital and smartphone cameras, respectively. Infield images captured diverse 
conditions associated with the background, shadows, blurring and sharpness effects, target leaf 
orientation, presence of multiple plant stresses, and other artifacts, such as clothing, paper, zip 
ties, and human hands. Fig 1 displays sample images from the dataset of maize leaves afflicted 
by SCLB. The photographer held a single maize leaf, which is attached to the uppermost ear of 
the plant, that would be the subject of analysis. They photographed about three randomly selected 
leaves for each plot of maize line per collection day. Although nearly 3,000 images were collected 
between the two growing seasons, only 396 images were manually annotated and used to train 
and test the deep learning models, U-Net and DeepLabv3, for the leaf and lesion segmentation 
tasks.  
Images for both segmentation tasks were manually annotated using the VGG Image Annotator 
(VIA) (Dutta & Zisserman, 2019). VIA provides multiple tools for annotating images, enabling 
users to outline objects of interest. Among the 396 annotated images, 350 were used in the 
models’ training process for leaf segmentation, and the remaining 46 were used to train the 
models for lesion segmentation. Each segmentation subset was randomly divided such that 
approximately 70% of the images were used for training (i.e., feature learning), 20% for validation 
(i.e., evaluation of the models’ performance while training), and 10% for testing (i.e., evaluation 
of the models’ performance after training).  
Field severity scores and RGB images were associated with a near-isogenic line and the date of 
data collection. Incorporation of the remaining images in the last evaluation step depended on the 
availability of a severity score. After filtration, 1,904 images were available to evaluate the 
multistage pipeline by comparing predicted severity scores to the field severity scores recorded 
by the plant pathologist during the field trials. 
 

    
Fig 1. Maize plants exhibit stress symptoms on leaves caused by the Bipolaris maydis pathogen. Images collected during 
the field trials of 2019 and 2023 display a variety of lighting and background conditions, as well as degrees of infection. 

 

Maize Leaf Annotations 
For the leaf segmentation task, all annotations were generated by placing points around the 
border of the target leaf with VIA’s polyline tool. The annotated images exhibited diverse 
conditions with respect to the target leaf’s position and orientation, lighting, object focus, and 
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background. Ground truth masks were created as binary images, where white pixels represented 
the leaf of interest and black pixels represented the background containing the remaining objects 
captured within the image. Sample images and the corresponding ground truth masks are 
displayed in Fig 2. The leaf dataset was divided into 70/20/10 percent splits, resulting in 245 
image-mask pairs for training, 70 image-mask pairs for validation, and 35 image-mask pairs for 
testing. Images in the train and validation sets were resized to 512 by 512 pixels before training 
the deep learning models. Also, geometric data augmentation methods of horizontal flips and 
random rotations were applied only to the train set.  
 
(A) Field Images 

   
(B) Ground Truth Masks 

   
Fig 2. Example image and mask pairs utilized for training the stage 1 models to perform leaf segmentation. (A) Sample 

images from the dataset that were manually annotated to locate the object of interest, the maize leaf, within the image. (B) 
The generated masks of the maize leaf used as the ground truth to train the segmentation models: U-Net and DeepLabv3. 

 

Southern Corn Leaf Blight Lesion Annotations 
The plant pathologist manually annotated 46 images for lesion segmentation using VIA’s ellipse 
tool. An ellipse was placed around the SCLB lesions present on the target leaf, resulting in 2,054 
SCLB lesions. Unlike the previous task, the original images were not resized, but rather, segments 
around each lesion were cropped to avoid reducing the resolution and possibly losing information. 
Lesions smaller than 512 pixels in width and height were at the center of the generated cropped 
patches. Lesions that were longer or wider than 512 pixels were cropped into multiple patches 
every 256 pixels. This process generated 2,514 image-mask pairs for the lesion dataset (Fig 3). 
Ground truth masks displayed two classes of interest: 1) SCLB lesions (white pixels) and 2) the 
remaining leaf tissue not afflicted by SCLB and background (black pixels). It is worth noting that 
these masks were not comprehensive because not all SCLB lesions were annotated. The dataset 
was split into 74/19/07 percent splits, resulting in 1,863 image-mask pairs for training, 465 image-
mask pairs for validation, and 186 image-mask pairs for testing. The same data augmentation 
methods performed on the leaf dataset were also implemented on this dataset.  
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(A) Field Images 

    
(B) Ground Truth Masks 

    
Fig 3. Example of images and their corresponding masks employed in the stage 2 training process to perform SCLB lesion 
segmentation. SCLB lesions present on the target leaf were manually annotated and the annotations were used to create 
the training dataset. (A) Cropped image patches containing at least one SCLB lesion. (B) The generated masks of SCLB 

lesions used as the ground truth to train the segmentation models: U-Net and DeepLabv3. 

 

Proposed Multistage Pipeline 
We designed a multistage pipeline for this study to estimate the SCLB severity on maize leaves 
in RGB images (Fig 3). The pipeline was formed by fusing the best-performing models based on 
their effectiveness to semantically segment maize leaves and SCLB lesions. First, field images 
were resized to 512 by 512 pixels before making predictions to separate the leaf from the 
background using the deep learning model selected for stage one. The output of stage one was 
scaled back to its original size, then partitioned into patches of 512 by 512 pixels by moving across 
the image 512 pixels at a time. For stage two, the deep learning model chosen to segment SCLB 
lesions was used to make predictions on the patches. After processing all the patches, they were 
restitched. The pipeline's ability to estimate SCLB severity using RGB images was evaluated 
based on the results of the 1,904 images that were not considered when making decisions about 
the networks' architecture for stages one and two. Stage three involves estimating the degree of 
affliction by computing the leaf and lesion areas after analyzing the results of the stages one and 
two models, respectively, and comparing the estimated scores to the field severity scores.  
The deep learning models were trained using transfer learning to leverage the layers of the neural 
networks to learn features and knowledge gained from a previous task to improve generalization 
(Weiss, Khoshgoftaar, & Wang, 2016). The configuration for each neural network includes a 
stochastic gradient descent (sgd) optimizer, cosine decay rate with an initial rate of 0.1, batch size 
of 16 images, and trained for a total of 50 epochs. All training and validation processes were 
performed using Tensorflow’s deep learning framework on a CPU with an Intel Xeon Gold 6258R 
processor, taking approximately 1.5 to 2 hours to train the U-Net and DeepLabv3 models for leaf 
segmentation and 5 to 10 hours for the lesion segmentation. Prediction mask generation for an 
image took less than a second in stage one and 15 seconds to process the patches and restitch 
them to the original dimensions in stage two. The area calculations for all leaves and lesions were 
completed within 30 minutes. 
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Fig 3. Graphical representation of the multi-stage segmentation approach to estimate SCLB disease severity. 

 

Semantic Segmentation Models 
In this study, two state-of-the-art networks, DeepLabv3 and U-Net, were trained on the RGB 
images collected during a maize field trial. We evaluated the networks’ ability to perform object 
localization and semantic segmentation of a maize leaf in images captured under uncontrolled 
conditions and disease symptoms from the leaf-segmented image. The architecture of each 
network employed in this study was adjusted to use the MobileNet v2 model as the backbone for 
feature extraction. MobileNet v2 was designed to locate objects using an inverted residual layer 
that reduces the number of operations while maintaining accuracy (Sandler, Howard, Zhu, 
Zhmoginov, & Chen, 2018).  
DeepLabv3 

Chen et al. (2017) created the DeepLabv3 model that consists of two main structures: (1) Atrous 
Spatial Pyramid Pooling (ASPP) module and (2) Pyramid Scene Parsing Network (PSPNet) 
(Zhao, Shi, Qi, Wang, & Jia, 2017). The ASPP structure applies atrous (dilated) convolutions 
(Dumoulin & Visin, 2016) that adjusts the receptive field while extracting features at different 
strides, and the PSPNet performs multiple pooling operations (Chen, Papandreou, Schroff, & 
Adam, 2017). Atrous convolutions help prevent the diminishment of detailed, spatial information 
of feature maps after passing through the convolution and pooling layers. The authors claim 
incorporating the ASPP module created denser feature maps containing global context that 
improved performance (Chen, Papandreou, Schroff, & Adam, 2017). A performance comparison 
against state-of-the-art models in the PASCAL visual object classes (VOC) challenge establishes 
DeepLabv3 as a state-of-the-art model for semantic image segmentation.  
U-Net 

U-Net is a semantic segmentation model initially created by Ronneberger, Fischer and Brox 
(2015) to segment neuronal structures in biomedical images that eventually became a state-of-
the-art model among other applications. It consists of a contracting path or encoder and an 
expanding path or decoder. The encoder contains blocks of convolution, activation, and pooling 
layers that transmit contextual information by increasing the outputs’ resolution using upsampling 
operators (Ronneberger, Fischer, & Brox, 2015). The outputs of the encoder are fed through the 
decoder, which is symmetrical to the encoder and creates a U-shaped architecture to obtain 
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object localization through transposed convolutional (Dumoulin & Visin, 2016) layers. The authors 
state that a major contribution of U-Net is the accuracy of segmentation with fewer training images 
(Ronneberger, Fischer, & Brox, 2015). Unlike the DeepLabv3 model, U-Net recovers spatial 
resolution with transposed convolutions.  
Table 1. Hyperparameters defined for training the deep learning models for both leaf and SCLB lesion segmentation tasks. 

 
Hyperparameter Value 
Batch Size 16 
Epochs 50 
Initial Learning Rate 0.1 
Momentum 0.9 
Optimizer sgd 

 

Evaluation Metrics 
A segmentation problem can be expressed in terms of pixel classification, where the results are 
evaluated based on true positives (TP), false positives (FP), true negatives (TN), and false 
negatives (FN) (Taha & Hanbury, 2015; Rahman & Wang, 2016). Subsequently, the Intersection 
over Union (IoU), also known as the Jaccard score, provides information on the models’ ability to 
make pixel-wise classifications. IoU is a commonly used spatial metric in semantic segmentation 
that measures the similarity between samples by quantifying the ratio of overlap between the 
ground truth (Jaccard, 1912). Higher IoU values indicate a greater overlap between the ground 
truth and predicted masks. The results were compared and quantitatively assessed using the IoU 
score for each class (Equation 1) and the mean IoU (mIoU) score (Equation 2), which is calculated 
by computing the average IoU over all classes. If C denotes the number of classes, then the IoU 
and mIoU can be expressed as: 

 𝐼𝑜𝑈! =
𝑇𝑃!

𝑇𝑃! + 𝐹𝑃! + 𝐹𝑁!
 (1) 

 
 𝑚𝐼𝑜𝑈 =	

1
𝐶
.𝐼𝑜𝑈!
!

 (2) 

Stages one and two outputs provided segmentation masks of the maize leaf and SCLB lesions, 
respectively. The disease severity was estimated by computing the area of leaf tissue and SCLB 
lesion tissue using the leaf and lesion segmentation results. The leaf’s area was defined as the 
number of pixels in the predicted mask of the leaf segmentation, whereas the lesions’ area was 
the number of pixels in the predicted mask of the lesion segmentation. Equation 3 computes the 
estimated disease severity for each image.  
 𝐷𝑖𝑠𝑒𝑎𝑠𝑒	𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦 = 	

𝐴𝑟𝑒𝑎"!#$
𝐴𝑟𝑒𝑎#%&'

 (3) 

Then, values of the proportion defined above were mapped using the generalized logistic function 
(Equation 4) and exponential function (Equation 5): 
 𝑓(𝑥) =

𝐿 − 𝐴

𝐶 + 𝑄𝑒()(+(+!)
" #$
+ 𝐴 (4) 

 𝑔(𝑥) = (𝐿 − 𝐴)𝑒)+ + 𝐴 (5) 

where L is the upper asymptote or the greatest desired y-value, k is the growth rate, A is the lower 
asymptote, and x0 is the x-value of the function’s midpoint (Birch 1999). The logistic and 
exponential functions were selected to map disease severity to a monotonically decreasing 
function (Fig 4). The predicted disease severity scores were mapped between the range of [1,9], 
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the same range of the scale used to rate disease severity among the field plots, using the following 
adjusted generalized logistic function (Equation 6) where L=9, A=1, x0=0.5, k= -10, and the 
remaining coefficients set to 1 and the adjusted exponential function (Equation 7) where L=9, 
A=1, and k= -5. 
 𝑓(𝑥) =

8
1 + 𝑒-.(+(..0)

+ 1 (6) 

 𝑔(𝑥) = 8𝑒(0+ + 1 (7) 

  
Fig 4. Adjusted generalized logistic and exponential functions used to map the estimated disease severity scores. The 

lower horizontal asymptote of the adjusted logistic and exponential functions occurs at 1, and the upper horizontal 
asymptote or maximum value within range occurs at 9. 

Finally, the estimated disease severity was statistically compared to the field severity scores 
provided by a plant pathologist using a correlation analysis. The analysis was used to determine 
if images of a single leaf contained relevant information that could be used to provide accurate 
severity grading similar to infield visual assessment. 
 

Results and Discussion 

Leaf Segmentation 
The objective of the first stage was to accurately segment the target maize leaf using deep 
learning models. The performance of each model was evaluated using a test set of 35 images, 
which was separated from the leaf dataset before training the models for segmentation. Table 2 
presents the quantitative results for the U-Net and DeepLabv3 networks trained to distinguish the 
target maize leaf from the image’s background. Based on the performance metrics (Table 2), the 
DeepLabv3 network was deemed the better model because it achieved a mean IoU of 0.879, a 
background class IoU of 0.966, and a leaf class IoU of 0.792. Meanwhile, the U-Net network 
obtained a mean IoU, background class IoU, and leaf class IoU of 0.707, 0.920, and 0.494, 
respectively. Since the background typically represents the majority of pixels within the images, 
biasing of the IoU towards the background class is expected. This biasing effect is more prominent 
in the U-Net network than in the DeepLabv3 network upon inspection of the individual class IoU 
values. 

Table 2. Quantitative results of the U-Net and DeepLabv3 models for the maize leaf segmentation task to evaluate the 
performance based on the IoU evaluation metric.   

 
Evaluation Metrics U-Net DeepLabv3 
Background class IoU 0.920 0.966 
Leaf class IoU 0.494 0.792 
mIoU 0.707 0.879 
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Fig 5 provides example images from the test set and their corresponding predictions that allow 
the results of each network to be qualitatively analyzed. The networks’ results tend to demonstrate 
orientation invariance. Misclassifications occurred among images that captured leaves sharing a 
boundary, large quantities of direct sunlight on the leaf, inconsistent lighting across the leaf, and 
holes in the leaves. Although the U-Net network could recognize maize leaves, it struggled with 
defining the target leaf’s boundary, tip, and blade nearest to the sheath. Based on DeepLabv3’s 
performance, we inferred the model learned leaf features that allowed for the repeatability of leaf 
segmentation despite the nuisances in the image. 
 

Dataset U-Net DeepLabv3 
(A) Image (B) Ground 

Truth 
(C) Segmented 

Image 
(D) Predicted 

Mask 
(E) Segmented 

Image 
(F) Predicted 

Mask 

      

      

      
Fig 5. Qualitative results of the U-Net and DeepLabv3 models for the maize leaf segmentation task. (A) and (B) Sample 
images and ground truth mask pairs from the test set, respectively. (C) Segmented images created based on the (D) 

predicted masks for the U-Net model. (E) Segmented images created based on the (F) predicted masks for the DeepLabv3 
model. 

 

Lesion Segmentation 
For the lesion segmentation task, the U-Net and DeepLabv3 networks were evaluated for their 
ability to identify SCLB from the leaf-segmented images produced in stage one. The evaluation 
metrics presented in Table 3 are the results of the test images that were separated from the 
dataset prior to training. Once again, the DeepLabv3 network outperformed the U-Net network for 
the lesion segmentation task. The DeepLabv3 network obtained a mean IoU, background class 
IoU, and SCLB lesion class IoU of 0.849, 0.919, and 0.779, respectively. The U-Net network 
achieved a mean IoU of 0.572, a background class IoU of 0.761, and a SCLB class IoU of 0.383. 

Table 3. Quantitative results of the U-Net and DeepLabv3 models for the SCLB lesion segmentation task to evaluate the 
performance based on the IoU evaluation metric. 

Evaluation Metrics U-Net DeepLabv3 
Background class IoU 0.761 0.919 
SCLB lesion class IoU 0.383 0.779 
mIoU 0.572 0.849 

Example images from the test set and their corresponding predictions of each network were 
qualitatively examined (Fig 6). Results indicate that both networks could identify lesions on the 
leaf regardless of orientation. However, the DeepLabv3 model learned to distinguish and segment 
SCLB lesions more precisely than the U-Net network. For example, the U-Net network often 
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segmented other foliar stress and the midrib, as seen in rows one and three of column C in Fig 6. 
We infer that the network learned to segment stress in a color thresholding manner by 
distinguishing plant stress with yellow or white coloring from leaf tissue and not patterns specific 
to SCLB. Since the annotations of SCLB lesions were not comprehensive, decisions about the 
network’s architecture could not solely rely on a high mIoU value, and the model that performed 
better at SCLB lesion generalization was considered. Therefore, the DeepLabv3 network was 
selected as the best-performing network for stage two because it achieved greater IoU scores 
and seemed to be more specific at SCLB detection. 
 

(A) Image (B) Ground Truth (C) U-Net  
Predicted Mask 

(D) DeepLabv3  
Predicted Mask 

    

    

    
Fig 6. Qualitative results of the U-Net and DeepLabv3 models for the SCLB lesion segmentation task. (A) and (B) Sample 
images and ground truth mask pairs from the test set, respectively. Predicted masks of the cropped patches in column A 

for the (C) U-Net and (D) DeepLabv3 models. 

 

Quantification 
The analysis of the previous experiments determined that the DeepLabv3 model was better than 
the U-Net model at performing leaf and lesion segmentation. Thus, the first two stages of the 
pipeline integrated two DeepLabv3 models to extract the maize leaf by eliminating the background 
to remove nuisance elements within the image and semantic segmentation of the SCLB lesions. 
The fused model's feasibility and validity were tested on 1,904 images, 1,352 of which were 
collected during the 2019 field trial and 552 of which were collected during the 2023 field trial. 
Intensity estimation of SCLB symptoms was computed using the proportion of lesion area to leaf 
area calculated from the results of the lesion and leaf segmentation tasks, respectively. For every 
data collection day, images of about three randomly selected leaf samples were captured for each 
maize line. Before performing the correlation analysis, the average estimated severity proportion 
was computed for each maize line and collection day combination, which resulted in 468 and 184 
estimated severity proportions for the 2019 and 2023 growing seasons, respectively. Then, the 
adjusted logistic and exponential functions mapped each proportion within the range of [1,9].  
A correlation analysis for each field trial was performed between the field severity scores and the 
estimated disease severity scores to identify the absence or presence of a relationship; results 
are shown in Fig 7. Row A of Fig 7 shows the computed disease severity ratios of a single leaf 
and the field severity scores had a negative correlation (r = -0.85, p ≤ 0.001 for 2019 and r = -
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0.67, p ≤ 0.001 for 2023). A negative relationship was expected since maize plants rated with 
lower field severity scores would present more disease symptoms, resulting in greater disease 
severity ratios. The estimated severity scores mapped with the logistic function and the field 
severity scores had a positive correlation among the data for both growing seasons (r= 0.67, p ≤ 
0.001 for 2019 and r= 0.52, p ≤ 0.001 for 2023). Any computed ratio less than or equal to 0.30 
(row 7A) was mapped between 8 and 9 (row 7B). The correlation coefficient between the 
estimated severity scores mapped with the exponential and the field severity scores were r= 0.88 
(p ≤ 0.001) and r= 0.72 (p ≤ 0.001) for the 2019 and 2023 growing seasons, respectively. The 
values mapped using the exponential function exhibited a stronger positive relationship than those 
mapped using the logistic function. However, there was substantial deviation among some of the 
field severity scores. For example, the field severity score of 7 during the 2019 field trial had 
estimated severity scores between 2 and 9. This result suggested that the pipeline learned some 
patterns to identify SCLB lesions, but the model may have struggled to locate most of the lesions 
within the images. 
 

 2019 Growing Season 2023 Growing Season 
(A) Disease Severity 

  
(B) Logistic Function 

Mapping 

  
(C) Exponential Function 

Mapping 

  
Fig 7. Correlation analysis between the estimated severity (x-axis) and field severity scores (y-axis) for the 2019 and 2023 
growing seasons using the (A) disease severity proportions, (B) predicted scores mapped using the adjusted generalized 

logistic function, and (C) predicted scores mapped using the adjusted exponential function. 
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Conclusion 
Our approach utilized state-of-the-art deep learning models U-Net and DeepLabv3, often 
implemented in semantic segmentation. The DeepLabv3 model was identified as the better 
network for segmenting maize leaves and SCLB lesions among field imagery. The model 
achieved a mean IoU of 0.879 for leaf segmentation and a mean IoU of 0.849 for lesion 
segmentation. Two DeepLabv3 models were fused into a multistage pipeline that could be used 
to estimate disease severity. The DeepLabv3-DeepLabv3 pipeline benefited from full-resolution 
images to predict the disease severity of SCLB with a correlation coefficient of 0.88 and 0.72 for 
the 2019 and 2023 growing seasons, respectively. This study proposed a non-destructive, deep 
learning-based approach that extends disease detection and localization to severity estimation 
and maps the results within the same range as the rating scale for visual assessment of plants. 
This demonstrates promising results for its use when developing an efficient disease 
management system. Future work involves improving the pipeline’s generalization ability for 
SCLB lesion detection, monitoring lesion growth over time, and investigating whether the growth 
rates vary significantly among different near-isogenic lines. 
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