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Abstract.  
Crop disease detection using traditional scouting and visual inspection approaches can be 
laborious and time-consuming. Timely detection of disease and its severity over large spatial 
regions is critical for minimizing significant yield losses. Hyperspectral imagery has been 
demonstrated as a useful tool for a broad assessment of crop health.  The use of spectral bands 
from hyperspectral data to predict disease severity and progression has been shown to have 
the capability of enhancing early disease detection, even before the onset of visible symptoms. 
In this study, off-axis hyperspectral imagery from entire fields are coupled with breeder-assigned 
plot-wise severity scores from a single growing season, to develop a machine-learning 
framework to detect and grade the severity of southern leaf blight infection in corn. The 
approach aimed to enhance the predictability of disease severity while assessing the 
interpretability of specific spectral wavelengths in relation to known biochemical processes. By 
employing unsupervised clustering techniques to isolate pixels associated with corn crops, a 
significant correlation between disease assessment and the spectra from segmented pixels was 
found. Feature reduction methods, e.g., Linear Discriminant Analysis (LDA), L1-Regularization, 
and Sequential Feature Selector, were implemented with a focus on identifying the most 
discriminative and influential wavelengths. These selected and extracted wavelengths were then 
evaluated using linear and non-linear regression-based models and quantified their 
effectiveness in identifying and grading disease in corn. The results showed that transforming 
the feature space with LDA achieves an R2 value of 0.847. However, sacrificing some predictive 
power (R2 of 0.607) enables the selection of wavelengths through Sequential Feature Search.  
Feature reduction identified spectral content in the 500-600 nm range through LDA loadings 
analysis and SFS evaluation, correlating with photosynthetic production indicators like 
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carotenoids and chlorophyll b, thereby highlighting the underlying biochemical mechanisms. The 
results show that hyperspectral imagery offers the unique advantage of scrutinizing the relative 
reflectance of specific wavelengths, enabling the capture of variations in disease grades and 
progression. These results hold significant promise for improving crop disease management, 
ultimately reducing crop losses and bolstering agricultural sustainability. Furthermore, the 
development of hyperspectral field imagery and machine learning models hold the potential for 
broader applications in monitoring and mitigating stressors in various crops, thereby advancing 
food security and promoting sustainability in agriculture. 
 
Keywords.   
Hyperspectral imaging, disease severity estimation, Southern Corn Leaf Blight, machine 
learning.  

Introduction 
Non-destructive imaging allows farmers and breeders to identify disease presence accurately and 
efficiently in crops and plants in a high throughput manner. Farmers and breeders have historically 
relied on scout teams to survey fields for disease presence within their crops demanding an 
enormous amount of time, labor, and expertise in distinguishing the variations in different stress 
responses. As agriculture is a multi-trillion dollar global industry and global crop losses due to 
biotic stressors are $60 billion, pointed and timely mitigation efforts are imperative to reducing any 
yield loss (Oerke, 2006; Reddy et al., 2009). Corn, a top five globally produced crop, faces the 
threat of 65 known pathogens causing an estimated 22.5% yield loss (Savary et al., 2019). 
Despite the variability in growth parameters and corn genotype, Southern leaf blight (SLB), a foliar 
disease, remains a significant concern due to its rapid development and potential for widespread 
transmission, as it is the 7th most destructive disease in the Southern United States (Mueller et 
al., 2020). Traditional non-destructive imaging systems (RGB imaging), are limited to assessing 
visible symptoms of stress response, which reduces their ability to recognize non-visual changes 
for a rapidly developing disease like SLB. Integrating imaging spectroscopy and near-infrared 
reflectance into disease recognition provides an objective measure, complementing traditionally 
subjective methods of manual field surveying and aiding in the deployment of efficient and 
accurate models for targeted mitigation efforts. 
Notable advancements in automated leaf-level identification of diseases through machine 
learning have been facilitated by the accessibility of open-source comprehensive datasets like 
the PlantVillage dataset (Hughes and Salathé, 2015). Despite the strides made in leaf-level 
disease identification, models trained with images from controlled environments perform poorly in 
real-world settings, as shown by Mishra et al.’s 10% performance drop in field deployment (Mishra 
et al., 2020). Manual data collection through scout teams or UAV-based observations introduces 
inefficiencies, especially in capturing early-stage disease development. The limitations of 
overhead (nadir) observations with UAVs, as noted by Jia et al., hinder the effective capture of 
early-stage foliar diseases under the upper canopy (Jia et al., 2023; Zhang et al., 2019). This can 
impede timely mitigation efforts as foliar diseases tend to propagate from the basal leaves to the 
developing ear and finally to the flag lead of the plant (Ali et al., 2011). While both RGB and 
hyperspectral imaging are effective for recognizing disease  (Mahlein et al., 2013),  hyperspectral 
imaging provides insights into changes in pigmentation and internal structure (Gold et al., 2020), 
which is critical for asymptomatic recognition and assessing disease severity. Dense spectral 
information is often reduced into a transformation or a subset of influential wavelengths through 
methods such as computing spectral Vegetation Indices (VIs) (Jia et al., 2023; Khan et al., 2021), 
developing specific spectral Disease Indices (DIs) (Mahlein et al., 2013; Meng et al., 2020), and 
extracting key features (e.g., PCA) (Ravikanth et al., 2017). This refined data aids in assessing 
disease severity, offering deeper insights into the extent of damage, and informing mitigation 
strategies. While severity classification involves discretizing the levels of disease severity into 
distinct bins, whether this categorization is based on the development stage or the proportion of 
disease incident on plant leaves, estimating disease severity over a continuum of severity scores, 
provides a finer resolution and more nuanced understanding of the disease's impact and the 
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plant's response. For instance, UAV multispectral imaging effectively estimated the severity of 
potato late blight, with the NIR region showing significant differences for severity scores and 
achieved an R2 value of 0.74 (Duarte-Carvajalino et al., 2018). Similarly, controlled hyperspectral 
imagery and computed VIs assessed the severity of Wheat Powdery Mildew, achieving a 
coefficient of determination (R2) of 0.722, demonstrating the effectiveness of hyperspectral 
imagery in precise disease severity estimation (Khan et al., 2021). Severity estimation allows 
differentiation between asymptomatic stages, pre-visual symptoms, and early symptom 
development, particularly when leveraging hyperspectral information. This level of detail can 
provide valuable insights into disease progression and aid in decision-making for growers and 
breeders. 
As such, this research explores the efficacy of off-axis polarized hyperspectral imaging in 
objectively identifying and quantifying the severity of Southern Corn Leaf Blight (SLB) within 
whole-field images. Departing from traditional disease detection and classification models, we 
employ a regression-based algorithms capable of distinguishing among a continuum of severity 
scores, thus providing detailed insights into the disease's progression. In hyperspectral imaging 
for plant phenotyping, challenges such as high dimensionality and a limited sample pool, 
contribute to the curse of dimensionality. To mitigate this issue, we implement non-overlapping 
subsampling of the plots, thereby augmenting the dataset. We examine various feature reduction 
techniques to enhance the prediction and estimation of severity and improve the interpretability 
of plant responses to SLB development. Results show high performance in the severity estimation 
of Southern Corn Leaf Blight, providing an efficient and effective assessment of disease at the 
plot level. Further, the reduced feature space is examined to identify wavelengths that are 
representative of Southern Leaf Blight development and connect these wavelengths to known 
underlying bio-physical processes. This has the potential to allow breeders and growers to 
implement targeted mitigation efforts by leveraging visible and nonvisible responses to disease 
incidence. 
In summary, the main contributions of this research include: 

• Assessing the utility of various hyperspectral image feature reduction techniques for 
estimating per-plot disease severity. 

• Deriving an understanding of the underlying biological mechanisms driving the disease 
response. 

The rest of the paper is organized as follows. Methods presents the proposed pipeline of 
hyperspectral field images including preprocessing, unsupervised segmentation, and dimension 
reduction techniques used in this study. Finally, Results presents the results of the contributions 
listed above in detail. 

Methods 

Data 
This work utilizes whole-field imagery from a hyperspectral imaging polarimeter mast camera (Kudenov et al., 2022) of 
corn development through the 2019 growing season. The plot fields were set up in two replications of the corn opposite 
each other. The hyperspectral imager captures one full replication in each image. Within each replication, 40 plots are 
identified with different corn genotypes with varying susceptibility to SLB. During the growing season, an expert breeder 
assigned corresponding plot-wise disease severity scores based on visual inspection following the procedure presented 
in (Sermons and Balint-Kurti, 2018). The scores are representative of the whole plot and assess the lesions on the ear leaf 
and the upper leaf. This work inspects images captured over three days with corresponding plot-wise scores.  (a) Ear-leaf 
sample images                                                          (b) Severity score distributions 

Figure 1a is a visual depiction of the varying scores that the breeder assigns.  
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 (a) Ear-leaf sample images                                                          (b) Severity score distributions 

Figure 1: (a)Ear-leaf samples of varying Southern Leaf Blight severity levels and (b) the severity score data distribution. 
The scores range from 9 to 1, the lower the more severe the symptom development. 

The hyperspectral images provide spectral information from 150 evenly spaced spectral bands 
from 485 nanometers to 780 nanometers, capturing the visible light spectrum and near-infrared 
information. Hyperspectral information is utilized as it can capture the key vegetation 
characteristics based on the reflectance including the green peak (500-600 nm), chlorophyll well 
(600-680 nm), the red edge (680-750 nm), and the near-infrared (NIR) plateau (750-900 nm) 
(Teke et al., 2013). Within the visible spectrum, 400 nm to 700 nm, the leaf pigment and 
chlorophyll production dominates the response while the NIR spectrum, 700 nm to 1300 nm, 
provides insight into the internal structure of the leaf (Das et al., 2018).   
In total, there are 6 hyperspectral datacubes, each containing the 40 designated plots, resulting 
in 240 plots used for analysis. The majority of plots exhibit minimal symptom development (i.e., a 
score >8), with scores ranging from 8.5 to 3, as depicted in  Figure 1b. The dataset is stratified 
into training and testing sets based on a split of 80-20% according to severity scores. Further, the 
training set undergoes a stratified 5-fold cross-validation for model training. 

Preprocessing 

 
Figure 2: Sample image of the maize field in grayscale. 

To account for the challenges regarding changes in illumination and incident angle of the sun, 
images were selected around noon. The hyperspectral images were then normalized with band 
min-max normalization technique (Cao et al., 2017; Suzuki et al., 2008) to account for varying 
illumination across the field or across time. The wavelengths below 500 nm and greater than 750 
nm are omitted to reduce bias or artifacts at the end of the signatures, leaving 127 evenly spaced 
spectral bands. The spectral signatures are then smoothed using the widely adopted Savitzky-
Golay filter (Bohnenkamp et al., 2019; Meng et al., 2020; Moghadam et al., 2017). This filter 
effectively reduces noise while preserving spectral information  (Ravikanth et al., 2017).  
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Plot Identification 

 
Figure 3: Sample field image with each plot colored. Each field image contains 40 plots. 

Further preprocessing is required to identify the plots within the whole-field images (Figure 2) to 
pair to the plot-wise severity scores. Manual instance segmentation was employed to define the 
boundaries of the 40 individual plots within each image and match them to their individual severity 
scores. As a result, Figure 3 illustrates the delineated plot boundaries.  This step was essential 
for subsequent analysis and for identifying trends within the plots that corresponded to the 
different severity scores. These plots will further be subset into a 3-by-3 grid to increase the 
number of plot images present within the dataset. 
Crop Identification 

Within the images are representations of corn crops and background objects such as soil and 
grass. The segmentation of crops from background objects aims to enhance the detection and 
description of SLB disease severity. Initial pixel masking employs computed Normalized-
Difference Vegetation Index (NDVI) values to cluster vegetation-based pixels and identify 
impervious areas or image artifacts (Bah et al., 2018; Lassiter and Darbari, 2020; Lu et al., 2022; 
Suzuki et al., 2008). NDVI is derived from the normalized difference between the red and NIR 
bands and indicates vegetation density or 'greenness' within pixels or regions (Carlson and 
Ripley, 1997). While NDVI thresholding commonly distinguishes vegetation from background 
pixels, its effectiveness is primarily observed in settings with clear vegetation-background 
boundaries, such as urban environments or controlled imaging conditions. Evaluating 
unsupervised clustering with and without thresholding will assess its adaptability to complex 
environments lacking distinct boundaries. The limitations of single wavelengths spectral 
vegetation indices (Vis) in accurately classifying diseased or damaged vegetation underscore the 
need for refined segmentation techniques. 
Following initial NDVI masking, unsupervised K-Means clustering (Sinaga and Yang, 2020) 
isolates corn crop pixels to generate a crop mask (Hamuda et al., 2016), highlighting the value of 
using both the NDVI mask. The optimal number of clusters is determined by balancing 
unsupervised metrics and visually assessing the resulting clusters. These metrics include the 
within-cluster sum of squares to minimize variance within a cluster, the Silhouette Score to 
maximize the similarity of data within clusters and dissimilarity between clusters, and the Bayes 
Information Criterion. 

Feature Reduction 
Hyperspectral information is inherently high-dimensional with a broad spectral range and small spectral resolutions, i.e., 
500 nm - 750 nm with a resolution of ~2 nm. These spectral bands experience multicollinearity as there is a strong 
correlation between each band necessitating a reduced feature space (Chan et al., 2022).  (a) Ear-leaf sample 
images                                                          (b) Severity score distributions 

Figure 1 
Feature Selection 

Using feature selection remains a popular method for performing dimension reduction for 
hyperspectral imagery. Feature selection is a method of feature reduction that subsets the original 
set of features maintaining the physical explanations of the features (Vijouyeh and Taskin, 2016). 
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Feature selection contextualizes the reduced feature space, however, it also produces feature 
subsets that are overly specific to a given task (Brown et al., 2012).  
This paper explores four techniques: correlation-based, mutual information (Brown et al., 2012), 
Sequential Feature Selector (SFS) (Kwak and Chong-Ho Choi, 2002), and 𝑙-1 regularized linear 
regression (LASSO) (Li et al., 2021). Correlation-based feature selection identifies features that 
have the highest relationship with the target variable, i.e., disease severity score, by calculating 
the correlation coefficient. Mutual information calculates the amount of information that the 
features provide about the disease severity score. SFS performs forward and backward feature 
selection by adding and removing features from the selected subset in a greedy manner. SFS 
seeks to minimize the criterion over all the achievable feature subsets. The final feature selection 
method is LASSO, it is a common technique as it imposes 𝑙-1 norm constraints on regression 
coefficients to perform both regression and feature selection simultaneously. This work utilizes 
the feature selection ability of LASSO to identify the features with the largest absolute coefficients. 
Feature Extraction 

In contrast, feature extraction is a transformation of the original feature space to make the classes 
more separable by extracting useful properties of the features (Vijouyeh and Taskin, 2016). This 
method of transforming the feature space removes contextual information from the reduced space 
but often reduces analogous features increasing the separability/discrimination between features 
(Zhao and Du, 2016). Principal component analysis (PCA) captures the most significant variations 
in the data without consideration for class associations. While there exist unsupervised and semi-
supervised methods of feature extraction, this work focuses on utilizing supervised techniques, 
i.e., Linear Discriminant Analysis (LDA) (Fang et al., 2014). LDA is a common feature reduction 
method that maximizes the ratio of between-class variance to within-class variance as such the 
loadings in LDA are the eigenvectors of the between-class scatter matrix multiplied by the inverse 
of the within-class scatter matrix. 

Evaluation 
To assess the various feature reduction techniques, both Linear Regression (Seber and Lee, 
2003) and Support Vector Regression (SVR) are used to handle the task of scoring the severity 
of the disease. These models investigate linear and non-linear relationships between the severity 
scores and the hyperspectral reflectance. The Ezekiel adjusted R2 metric (Ezekiel, 1929) and a 
Root Mean Squared Error (RMSE) metric are utilized to measure the effectiveness of the 
techniques. These metrics are chosen because of their ability to account for the fluctuations in 
the number of features, i.e., spectral bands, (F) and samples, i.e., subplots, (S) employed during 
the evaluation process, providing a more robust and fair assessment, as seen in Equation (1).  

              Adj R2 = 1 − S!"
S!F!"

× &1 − R2'  (1) 

To determine the optimal feature reduction technique, model, and number of features a 5-fold 
cross-validation is performed on 80% of the total subplots. The Adjusted R2 and RMSE metrics 
are averaged over the 5-folds to find the top-performing features for estimating severity and then 
tested on the remaining 20% of subplots for final performance metrics.  

Results 

NDVI masking distinguishes crops from background in complex environments. 
Unsupervised K-Means clustering was leveraged to distinguish the crops from all other 
background elements in the images. Additionally, an initial masking of NDVI values was 
implemented to enhance the discrimination of the K-Means clustering and the applicability of 
NDVI masking to complex images. Three different metrics, the Sum of Squared Errors (SSE), the 
Silhouette Score, and the Bayesian Information Criterion (BIC) are evaluated and plotted in Figure 
4. Clustering an initial NDVI mask reduces the SSE and BIC while maximizing the Silhouette 
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Score, outperforming clustering without an initial mask. Traditionally, identifying the optimal 
number of clusters in unsupervised clustering requires identifying the 'elbow point' in the SSE plot, 
where adding more clusters no longer significantly reduces the SSE. Based on the elbow method, 
four clusters would be optima; however, with just one cluster (the NDVI mask) achieves the lowest 
SSE value (Figure 4a). A similar pattern is observed with the BIC, indicating that the initial NDVI 
mask minimizes separation within clusters. Yet, just two clusters the Silhouette Score is 
maximized (Figure 4b).  

 
                (a) Sum of Squared Errors                            (b) Silhouette Score                        (c) Bayesian Information  Criterion 

Figure 4: Resulting unsupervised clustering metrics for both clustering after an initial NDVI mask (blue) and without a 
mask (orange). The initial NDVI mask metrics are indicated by a Number of Clusters = 1. 

Using visual inspection, it has been found that the initial NDVI mask can distinguish the crop boundaries from background 
elements better than an additional two clusters (Figure 5). The visual inspection also shows that two clusters have 

incomplete segmentation masks, meaning that there are pixels within the crop that are expected to be labeled as crop but 
are classified as background. This is less evident with the NDVI mask. Through the balance of unsupervised metrics and 

visual assessment, an NDVI mask is determined to be optimal for distinguishing between the corn crops and all other pixel 
classes ((a) Initial NDVI Mask                                                                      (b) 2 Clusters 

Figure 5a). 

    
(a) Initial NDVI Mask                                                                      (b) 2 Clusters 

Figure 5: Visual comparison of (a) an NDVI mask and (b) 2 clusters after an initial NDVI mask. Purple corresponds to what 
is determined to be crops. 

Cross-validation identifies optimal feature reduction methods. 
Evaluating the 5-fold cross-validation results for both linear regression and Support Vector 
Regression (SVR) models, Linear Discriminant Analysis (LDA) emerges as the top-performing 
feature reduction technique, as illustrated in Figure 6. LDA demonstrated peak performance when 
10 features were used in an SVR model, significantly outperforming all other reduction techniques 
(Figure 6b). Sequential Feature Search (SFS) yields an average adjusted R2 value of ~0.55 in the 
5-fold cross-validation, peaking at 30 features and an Adj. R2 of 0.58 (Figure 6a). With fewer than 
20 features, LASSO features achieved an average adjusted R2 value greater than 0.5 with a linear 
regressor. 
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              (a) Linear Regression                                                  (b) Support Vector Regression 

Figure 6: Average Adjusted R2 for an increasing number of features for the 5-Fold Cross-Validation. Feature extraction 
methods are indicated with solid lines and X markers and feature selection methods are indicated with dashed lines and O 

markers.  

Feature extraction outperforms selection methods in estimating disease severity 
The top-performing combination of feature reduction methods, number of features, and model for 
the severity estimation task are then tested against the holdout test dataset. The results indicate 
that feature extraction techniques, specifically Linear Discriminant Analysis (LDA), outperform the 
top-performing feature selection techniques such as SFS or LASSO.  

Table 1: Results of top-performing feature extraction (LDA) and feature selection (LASSO and SFS) techniques when 
evaluated on the holdout test set. The adjusted R2, R2, and RMSE metrics are reported for both a linear regressor and SVR. 

Model Reduction # of Features Adj. R2 R2 RMSE 

Support Vector Regression LDA 10 0.847 0.906 0.969 

Linear Regression SFS 30 0.607 0.632 1.553 

Linear Regression LASSO 18 0.550 0.589 1.660 

Using LDA with 10 features and an SVR model achieved an adjusted R2 0.847 and minimizes the 
RMSE to 0.969, indicating high predictive accuracy (Table 1). This highlights the effectiveness of 
LDA in capturing the most informative features that contribute significantly to the model's 
performance.  
In contrast, applying the 30 features selected through SFS to a linear regression model resulted 
in an adjusted R2 value of 0.607 and an RMSE of 1.553 (Table 1). With 12 fewer features, LASSO 
achieves an adjusted R2 value of 0.550 on the holdout set. These feature selection methods (i.e., 
SFS and LASSO) are able to explain portions of the variance in the disease severity and contain 
some predictive power, but still fall short of the performance as a result of LDA extracted features. 

Linking bio-physical processes to the reduced feature spaces. 
Feature extraction methods are a transformation of the original feature space, but viewing the 
projection matrices provides insight into the spectral features that are important to SLB scores. 
By examining the 10 LDA components and calculating the mean and standard deviation of their 
loadings, significant spectral features are identified based on magnitudes greater than one 
standard deviation away from the loading's mean. These prevalent spectral features are plotted 
in Figure 7, where the height of the bars indicates how many loadings the spectral feature is 
influential in.  
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Figure 7: Identified prevalent and influential spectral features within the LDA loadings. Prevalent features are more than 

one standard deviation from the per-loading mean. The height of each spectral feature corresponds to the total number of 
loadings the spectral feature is prevalent in, maximum value is 10. Purple-colored bars represent prevalent wavelengths in 

8 or more components, teal-colored bars represent prevalent in 6 or more components, and yellow is all other 
wavelengths. 

From this analysis, it is observed that the most prevalent spectral features (greater than one 
standard deviation away from the per-loading mean for 8 loadings) range from 502 nm to 520 nm 
with a peak at 514 nm. These features are depicted by purple-colored bars, fall within the green 
peak of the visible spectrum, known for estimating chlorophyll content, particularly as this is the 
region of peak Chlorophyll b absorption (Teke et al., 2013). Additionally, spectral features 
prevalent in 6 or more loadings, shown in teal-colored bars, also highlight the range from 502 nm 
to 520 nm. Notably, there is a single prevalent spectral feature at 633 nm in 6 loadings. This 
region, spanning 625 nm to 675 nm, captures moderately influential spectral bands but it also 
within the broader chlorophyll well.  
Despite a diminished predictive power, the top-performing feature selection technique, SFS, 
directly connects with the context of the original feature space; that is, the selected spectral 
features maintain their relation to any bio-physical processes. As such, the 30 selected 
wavelengths can be located, and regions or clusters of wavelengths that were deemed influential 
can be identified (Figure 8). Two regions stand out as particularly influential as there due to simple 
clustering of spectral bands: 500 nm – 598 nm and 682 nm – 742 nm. Notably, wavelengths 617 
nm and 629 nm were excluded from a cluster due to their coefficients’ magnitude being 
significantly smaller in scale than the other wavelengths.  
The region 500 nm – 598 nm is dominated by Carotenoid and Anthocyanin content within the 
green peak (Gitelson et al., 2006). The cluster that ranges from 682 nm to 742 nm captures 
information within the chlorophyll well, which describes chlorophyll content, and the red-edge 
region is known for its ability to identify and grade vegetation stress as it captures changes within 
internal structure and chlorophyll content(Goswami et al., 2021; Wiefels and Baroja, 2022). 
Primarily these selected spectral features capture changes within the pigmentation of the leaf, but 
the region of the red edge and NIR plateau can begin to provide insights into internal changes. 
There is a region of identified spectral features that consistently appeared influential across both 
the extracted and selected features. Specifically, the region corresponding to the green peak and 
Chlorophyll b absorption exhibited notable importance. This finding aligns with previous research 
on classifying the severity of Southern Leaf Blight (SLB) in corn using vegetation indices, where 
the Chlorophyll content was also identified as significant (Lv et al., 2023; Safir, 1972). Given that 
SLB disease symptoms primarily result from chlorophyll degradation, the results underscore the 
importance of this spectral signature in modeling disease progression. 
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Figure 8: 30 selected wavelengths or features from Sequential Feature Search. 

Conclusion  
In this study, the aim was to design an automated pipeline for objectively assessing the severity 
of Southern Corn Leaf Blight (SLB) in high-throughput whole-field hyperspectral images. By 
evaluating spectral features indicative of SLB's presence and progression, the goal was to 
improve subsequent analysis for forecasting disease progression and deepen the understanding 
of the bio-physical responses to the disease. The findings reveal that while feature selection 
techniques offer direct connections to contextual interpretations, feature extraction methods 
demonstrate higher predictive power. Through the examination of the loadings of Linear 
Discriminant Analysis (LDA), insights were gained into the spectral features of importance, 
uncovering consistent features across both feature selection and extraction techniques. Notably, 
the region of the green peak (500 nm to 600 nm) highlights the hindrance of Chlorophyll b 
production as Southern Leaf Blight progresses. By analyzing the spectral features identified as 
influential and important, a balance is struck between interpretable features and accurate 
assessment of disease severity. This integrated approach paves the way for a more 
comprehensive understanding of SLB dynamics and facilitates the development of effective 
strategies for disease management and crop protection. 
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