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Abstract.  
Sesame (Sesamum indicum) is an irrigated oilseed crop, and studies on its water content 
estimation are sparred. Unmanned aerial vehicle (UAV)-borne imagery using spectral 
reflectance as well as thermal emittance for crops are an ample source of high throughput 
phenotypic information about their physiological and chemical traits. Though several studies 
have dealt with thermal emittance to assess the crop water content, evaluating its relation to the 
plant’s solar reflectance is limitedly explored. In this work, we remotely estimated the leaf 
relative water content (RWC) of field-grown sesame plants using hyperspectral and thermal 
UAV-borne imagery and discussed its trends for a growing season. Measurements were 
obtained for RWC by leaf destructive analysis for 20 field-grown sesame plots on sandy soil at 
five different dates throughout the season. It was followed by implementing paradigms of RWC 
estimation techniques using UAV-borne hyperspectral imagery in the range of 400 to 1000 nm 
and thermal infrared emittance data acquired from the crop canopies. The estimated RWC 
values were compared with the measured values to assess the quality of the estimation models. 
In a parallel set of analyses, we developed a relation between the measured RWC and thermal 
infrared-derived crop water stress index (CWSI) for sesame canopy. With RWC values ranging 
from 75 % to 90 %, it was observed that the genetic algorithm-based partial least square 
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regression (GA-PLSR) performed accurately using crop canopy hyperspectral reflectance for 
estimating RWC values along the full-time scale of acquisition with a cross-validated coefficient 
of determination (R2) of 0.6 and root mean squared error (RMSE) of 1.77 %. On the contrary, 
the thermal dataset-derived CWSI provided the best fit of R2 = 0.3 and RMSE = 1.73 % only at 
the last measuring date. However, its overall time scale trend did not provide better predictions. 
The regression models further showed a reduction in the leaf RWC as time progressed. This 
was evidenced by an increasing negative slope from -0.7 to -10 between RWC and CWSI, 
which indicated a developing water stress. With prior knowledge about the relation of CWSI with 
water status parameters (RWC and leaf water potential), possibilities of its dependence on 
photosynthesis were further explored, revealing that the CWSI is also affected by 
photosynthesis even with a low RWC. The advantage of the high dimensional hyperspectral 
data was exploited because it learned a weighted combination of spectral features compared to 
thermal data, thereby improving RWC estimation. The insights obtained from these experiments 
further helped us to map the experimental sesame plots’ images for their water content during 
the growing season. Further scope would combine the hyperspectral and thermal datasets to 
improve RWC estimation through multimodal analysis. 
 
Keywords.   
Airborne imagery, multimodal analysis, crop temperature, GA-PLSR, crop water stress index. 
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INTRODUCTION 

Leaf relative water content 
Leaf relative water content (RWC) is defined as the percentage composition of water present in 
a leaf. It is one of the essential measures of a crop’s water status, providing information about 
physiological processes in the leaf stomata that is vital for crop growth and development. It 
determines the plant health, photosynthetic efficiency and also acts an indicator for water stress 
assessment (Ullah et al. 2012). In the agriculture domain, accurate estimation of leaf RWC helps 
in scheduling irrigation and also for yield estimation (Peñuelas et al. 1993, Peñuelas et al. 1997). 
Instantaneous water stress in a crop, if not adequately managed, can create long-term water 
stress, resulting in a significant reduction in its yield (Hsiao and Acevedo 1974). Further the 
irrigation patterns can be monitored easily by the crop water status rather than measuring soil 
water content (Alchanatis et al. 2010; Jackson 1982). 
Leaf water content can be determined through invasive and non-invasive techniques. Invasive 
techniques (determining directly from a leaf sample) is time consuming and is laborious for 
commercial farms. RWC estimation based on crop temperature measurements using thermal 
infrared (TIR) thermometers though considered as an accurate, reliable and non-invasive 
technique, this has limitations to acquire uniform measurements for large commercial fields 
(Alchanatis et al. 2010). Also, daytime changes in the solar illumination might affect such 
measurements. This necessitates for a faster and robust RWC estimation approach that can be 
implemented for larger fields. Remote sensing-based techniques offers its potential to utilize 
remotely sensed information from field crops for estimation of water content and mapping of a 
crop’s water status. 

Remote estimation of leaf RWC 
Various remote sensing techniques pertaining to visible (VIS, 400 – 700 nm), near infrared (NIR, 
700 – 1200 nm), shortwave infrared (SWIR, 1200 – 2500 nm), mid infrared (3 – 5 µm), thermal 
and far infrared (7.5 – 15 µm) and microwave (2.5 – 8 cm), have been used for remote estimation 
of leaf RWC (Srikanth et al. 2020; Ceccato et al. 2001; Clevers et al. 2010; Fabre et al. 2010; Gao 
et al. 2015; Huang et al. 2015; Hunt et al. 2011; Merlin et al. 2010; Neinavaz et al. 2017; Raj et 
al. 2021; Yilmaz et al. 2008). Unlike remote sensing at long wavelength regions constrained by 
coarse spatial resolution that offer a limited availability of terrestrial spectral energy, hyperspectral 
remote sensing enjoys the advantage of capturing information within hundreds of narrow 
contiguous spectral bands providing valuable insights on interaction of incident solar energy with 
water molecules present in the leaves (~970, ~1200, ~1400, ~1940 nm) as described in the work 
of Curran 1989. 
Several studies have been conducted to estimate leaf water content and monitor water status 
from remotely sensed hyperspectral imagery, but these have been studied on determinate crops 
such as maize and wheat having a defined growth cycle. A study to remotely estimate leaf RWC 
on an indeterminate crop has never been published. Our study focuses on spectral estimation of 
leaf RWC for an indeterminate crop, sesame (Sesamum indicum) using hyperspectral and 
thermal remote sensing for a comparative analyse, that would address the timeline trend of water 
status for crops with indeterminate growth. 

Aim and objectives 
This study aimed to comparatively analyze the leaf RWC estimated from UAV-hyperspectral 
reflectance and thermal imagery for mapping water status in sesame field. To achieve this aim, 
specific objectives were set to be strived at: 

1. To remotely estimate sesame leaf RWC from hyperspectral and thermal datasets. 
2. To comparatively analyze between the measured leaf RWC and its estimates derived 

from hyperspectral and thermal imagery. 
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METHODOLOGY 

Study area 
Field experiment was conducted for the sesame crop in the Experimental Farm of The Robert H. 
Smith Faculty of Agriculture, Food and Environment, Rehovot, Israel (31°54’N; 34°48’E) during 
the summer of 2020 (Fig. 1(a)). 

 
Fig 1. Study area of our experiment: (a) Field experiment was conducted at the experimental farm of The Robert H. Smith 

Faculty of Agriculture, Food and Environment in Rehovot; (b) Experimental farm plots displaying the selected sesame 
plots (highlighted by numbers in white color) used for our experiment. 

Experiment and data acquisition 
Sesame seeds of a single cultivar were sown on 24 May, 2020 in 30 plots of the experimental 
farm (Fig. 1(b)). Each plot had an average area of 14 m2 (7 m long and 2 m wide), with a cropping 
density of 17 plants/m2. 
Post-emergence of plants on 31 May, 2020, remotely sensed data and leaf RWC were acquired 
at five dates during the growing season 39, 51, 57, 74 and 81 days after emergence (DAE).  

• Sesame canopy hyperspectral reflectance images were acquired in the visible and near 
infrared (VNIR) region (385 – 1020 nm) using a Pika L airborne hyperspectral scanner 
(Resonon Inc. Bozeman, MT, USA) that was mounted on a Matrice600 UAV (DJI, 
Shenzhen, Guangdong, China). The hyperspectral scanner was deployed at an altitude 
of 100 m above canopy, with a field-of-view (FOV) of 24.8° (linear FOV 42 m) configured 
for obtaining 900 pixels per scanning line in 300 hyperspectral bands. 

• TIR emittance images were acquired using an A655SC infrared camera (FLIR Systems, 
Melvile, NY, USA) mounted on a Matrice600 UAV. The camera had a spatial resolution of 
640 × 480 pixels, sensitive in the spectral range of 7.5 µm – 13 µm. 

• Leaf RWC was measured for youngest fully developed leaf picked from the centre of each 
sesame plot. The leaf samples were cut to ten circular discs of 0.8 cm diameter and 
weighed. It was followed by oven-drying them for 72 hours with the temperature set to 60 
°C. Subsequently, the oven-dried leaf discs were weighed and the difference of the dry 
weight from the fresh weight was determined for each disc. The differences for ten leaf 
discs were averaged which determined the RWC of the leaf corresponding to the sesame 
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plot. 

Data pre-processing 
The UAV-borne hyperspectral images were pre-processed for: 

1. Radiometric correction- Implemented using the Spectronon software with the calibration 
parameters provided by the manufacturer, Resonon, Inc. 

2. Atmospheric correction- Implemented by flat field ratioing using a standard Resonon grey 
tarp. 

3. Geometric correction- Mosaicking scanned lines to produce the hyperspectral image, 
followed by georectification. 

4. Spatial subsetting- Subsetting obtained hyperspectral image to the areal coverage of the 
sesame field (shown in Fig. 1(b)). 

5. Noise removal- The hyperspectral bands corresponding to 385 – 400 nm (bands 1 to 10) 
and 1010 – 1020 nm (bands 296 to 300) wavelength ranges were removed due to the 
high spectral noise present in them. 

6. Spectral smoothening- The pre-processed hyperspectral images were spectrally 
smoothened for the 745 – 1010 nm (bands 174 to 295) wavelength range using the 
Savitzky-Golay method with a window size of 25 bands and polynomial value of 2 
(Savitzky and Golay 1964). 

7. Vegetation filtering- A normalized differential vegetation index (NDVI) threshold of 0.7 was 
set that distinguished vegetation (NDVI ≥ 7) from soil pixels (NDVI < 7). The NDVI is 
formulated as: 
 

𝑁𝐷𝑉𝐼 =
𝜌!!".$% − 𝜌%!&.'(
𝜌!!".$% + 𝜌%!&.'(

≥ 0.7 

 
where 𝑟!!".$% and 𝑟%!&.'( are the reflectance values at 779.46 nm and 670.32 nm 
corresponding to near infrared (NIR) and red bands, respectively. 

The TIR images were pre-processed for spatial subsetting and extracting the vegetation pixels 
geographically co-registered with those of the hyperspectral reflectance images. It was followed 
by converting the digital number (DN) of the TIR pixels into crop water stress index (CWSI) values 
by normalization at a 0 – 1 scale (Alchanatis et al. 2010). The CWSI is formulated as: 
 

𝐶𝑊𝑆𝐼 = 	
𝐷𝑁)*+_-./ − 	𝑚𝑖𝑛	(𝐷𝑁)*+_-./0)

𝑚𝑖𝑛7𝐷𝑁)*+_-./08 	− 	𝑚𝑎𝑥7𝐷𝑁)*+_-./08	
 

 

where 𝐷𝑁)*+_-./ is the DN value of the vegetation-filtered TIR pixel, and 𝑚𝑖𝑛7𝐷𝑁)*+_-./08	, 
𝑚𝑎𝑥7𝐷𝑁)*+_-./08 are the minimum and maximum DN values among the vegetation-filtered pixels 
of the TIR image. CWSI images were derived from the TIR images for each data acquisition date 
using their corresponding DN value statistics. 
The measured sesame leaf RWC was analysed for the presence of outliers (if any) using boxplots 
that identified outlier values as larger than 1.5 times from the interquartile range of the distribution 
(Langford 2006). 

Data analysis 
The processed sesame dataset for the experimental farm was analyzed for 20 selected plots 
(highlighted by white-colored plot numbers in Fig. 1(b)) to estimate their leaf RWC using 
paradigms of RWC estimation techniques.  
UAV-borne images were used to determine correlation with the leaf RWC by using linear 
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regression modeled for each date of data acquisition. The hyperspectral and TIR-derived CWSI 
pixels corresponding to each sesame plot were averaged for a single hyperspectral reflectance 
and a mean CWSI value representing it. These averaged values linearly regressed for RWC 
provided us the Pearson’s correlation coefficients (r) for each hyperspectral band and a linear fit 
with CWSI establishing the coefficient of determination (R2). 
The measured leaf RWC was analysed to identify hyperspectral two-wavelength combinations 
using normalized differential spectral indices (NDSIs) (Thenkabail et al. 2000; Sahoo et al. 2022) 
that highly correlates with it. The NDSI is formulated as: 
 

𝑁𝐷𝑆𝐼(2,4) =
𝜌2 − 𝜌4
𝜌2 + 𝜌4

 

where 𝑖,	𝑗 are the wavelengths, and 𝜌2,	𝜌4 	are their corresponding reflectance values. 

The averaged hyperspectral reflectance was numerically modeled for the prediction of leaf RWC 
across all data acquisition dates using two machine learning (ML) techniques- (1) Random forest 
(RF) regression; and (2) Genetic algorithm-inspired partial least squares regression (GA-PLSR). 
RF is considered an accurate and robust ensemble technique for regression problems based on 
the aggregate result of decision trees to minimize the variance between measured values and 
their estimations. The RF model developed in our experiment was based on averaging the results 
for 100 epochs with each one of them trained on 70 % and cross-validated on 30 % randomly 
selected samples out of the total RWC measurements. Each epoch was trained using bootstrap 
and aggregation (aka Bagging) with a maximum 4 leaf node splits. The estimated leaf RWC from 
training and cross-validation were averaged for evaluating the model performance using R2 and 
root mean squared error (RMSE) between the measured and estimated values. 
Genetic algorithms have enhanced the performances of regression by selecting a subset of 
predictor features (individual hyperspectral bands in our case) and eliminating the noisy and 
highly correlated ones (Leardi et al. 1992). Discussed in the work of Leardi and Lupiáñez 
González 1998, the model is formulated as: 
 

𝑌= = 𝛽& + 𝛽6𝜌6 + 𝛽(𝜌( + 𝛽'𝜌' +⋯+ 𝛽7𝜌7 
 

with minimizing the error 𝑌= − 𝑌, where 𝑌= is the estimated RWC, 𝑌 is the measured RWC, 𝜌6, 
𝜌(,…, 𝜌7 are the reflectance values of subset spectral bands. These bands are associated with 
weight coefficients 𝛽6, 𝛽(,…, 𝛽7 and 𝛽& is an estimated bias parameter for the model. GA-PLSR 
was performed for 100 epochs with the same training-testing set as used for RF regression to 
reduce the effect of sample distribution (Herrmann et al. 2018). The leaf RWC estimated from all 
epochs were averaged to evaluate the GA-PLSR performance using R2 and RMSE metrics. 

RESULTS 

Linear regression 
Linear regression model implemented for each hyperspectral band with the leaf RWC provided 
the spectral correlation with it (Fig. 2). The correlation coefficient corresponding to each 
wavelength revealed the RWC estimation trends for each date of data acquisition. It was observed 
that hyperspectral reflectance data acquired on 39 DAE displayed a weak correlation with RWC. 
51 and 57 DAEs were featured with an improvement in correlation trend. The strongest correlation 
was observed on 57 DAE with a negative coefficient (r = -0.64) at 651.27 nm. Regression model 
of this wavelength provided a linear fit with R2 = 0.37 and RMSE = 1.40 %. Post-57 DAE was 
observed a reduced correlation for subsequent measurement dates (74 and 81 DAEs). 
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Fig 2. Pearson’s correlation coefficient (r) determined for each hyperspectral wavelength linearly regressed with measured 

leaf RWC. The color for each correlation coefficient curve corresponds to each date of data acquisition. The wavelength 
with the strongest correlation has been indicated with its R2 and RMSE values. DAE- Days after emergence; RWC- Relative 

water content; R2- Coefficient of determination; RMSE- Root mean squared error. 

Linear regression performed on CWSI revealed the trendlines estimating RWC for each data 
acquisition date (Fig. 3). The models displayed a progressive reduction of RWC with each TIR 
data acquisition date. Though a crop’s water content is inversely related to its water stress, the 
rate of RWC reduction varies within its growing season (Raya-Sereno et al. 2024). This was 
evidenced by an increasing negative slope ranging from -0.7 to -10 between leaf RWC and CWSI, 
indicating a developing water stress. TIR-derived CWSI provided the best fit of R2 = 0.30 and 
RMSE = 1.73 % on 74 DAE, a few days prior to sesame harvesting. Linear trends modeled on 
other acquisition dates did not provide better predictions. 
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Fig 3. Trendlines of linear regression for estimating leaf RWC using TIR image-derived CWSI. The color for each linear 
trendline corresponds to its date of data acquisition. The R2 and RMSE values are provided for each linear regression 

model. TIR- Thermal infrared; CWSI- Crop water stress index. 

NDSI regression 
The NDSI regression identified the two-wavelength combinations in hyperspectral datasets that 
were correlated with the RWC for each data acquisition date (Fig. 4). The initial days post-sesame 
emergence featured the red and blue region combinations that had maximum correlation with leaf 
water content. 39 DAE had the best linear fit (R2 = 0.20, RMSE = 1.17 %) for 613.37-, 470.43 nm 
wavelength NDSI, while 51 DAE exhibited the same for 653.38, 431.73 nm combination (R2 = 
0.55, RMSE = 0.93 %). The highly correlated NDSI feature shifted towards the NIR and red 
wavelength combination (952.58, 727.84 nm) for 57 DAE with the strongest linear fit (R2 = 0.60, 
RMSE = 1.11 %). Thereafter, the correlated NDSI features shifted towards the red-green region 
for 74 DAE (715.01, 540.39 nm with R2 = 0.47, RMSE = 1.45 %) and 81 DAE (710.74, 556.99 nm 
with R2 = 0.34, RMSE = 1.84 %). The NDSI regression trends revealed a determined fit only for 
one of the acquisition dates (57 DAE), which was also identified using linear regression for each 
hyperspectral band (Fig. 2). This showed a larger dependence on data acquisition date for 
spectral estimation of leaf RWC. This drawback was overcome with the use of ML techniques (RF 
and GA-PLSR) that learned the temporal variation among spectral features diagnostic to water 
content estimation, the results of which are presented in subsequent subsections. 
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Fig 4. Heatmaps showing the correlation between NDSIs of two-wavelength combinations of hyperspectral datasets with 
the measured leaf RWC for 39-, 51-, 57-, 74- and 81 DAEs (shown from (a) to (e)). The wavelength combinations with the 

best linear fit with their R2 and RMSE values have been indicated for the correlation heatmaps corresponding to each date 
of data acquisition. NDSI- Normalized differential spectral index. 

RF regression 
Regression using the RF approach estimated the RWC based on randomly choosing spectral 
features out of the training hyperspectral dataset (70% of the total dataset) and reducing 
prediction variance by averaging multiple estimates of these training samples for each epoch. The 
overall R2 for model training was observed to be 0.77 with a low RMSE (0.85 %), shown in Fig. 
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5(a). However, the RWC estimates in cross-validation (R2 = 0.42, RMSE = 1.25 %, in Fig. 5(b)) 
were clustered and assumed to be a possible distribution of cross-validated samples into identical 
learned feature space. Similar results were also obtained with increasing the number of leaf node 
splits hyperparameter. A high contrast among the training and cross-validation results suggested 
model overfitting in RF regression owing to high spectral similarities, minuscule noise among a 
limited number of data samples. This limitation was substantially overcome using GA-PLSR which 
initially identified the key predictor features subset for modeling RWC estimation. 

 
Fig 5. Scatterplots of measured vs. estimated leaf RWC obtained using RF regression for (a) training and (b) cross-

validation. The R2 and RMSE values of the linear fit has been shown displayed for these scatterplots. The markers are 
colored based on the date of data acquisition. RF- Random forest. 

GA-PLSR 
GA-PLSR identified key spectral features diagnostic to leaf RWC as a combination of results 
obtained from spectral and NDSI regression across all spectral acquisition dates. A higher 
weightage was provided for the 950 – 970 nm spectral region pertaining to hydroxyl (O-H) 
absorption prevalent in water molecules (Curran, 1989), which had earlier been obtained from 
NDSI correlation heatmap (Fig. 4(c)). 
The identified spectral features used to train the model with 10 PLS components on 70 % of 
samples indicated a linear fit with R2 = 0.77 and RMSE = 1.24 % (Fig. 6(a)). The cross-validation 
results (R2 = 0.76, RMSE = 1.76 % in Fig. 6(b)) also minimized the contrast with those obtained 
for model training. Though the RMSE among GA-PLSR model was higher than those obtained 
from RF regression, there was reduced effect of data clustering. A robust performance was thus 
observed for GA-PLSR model, that was subsequently used for mapping sesame leaf RWC for 
UAV-borne hyperspectral images for all acquisition dates. A comparison of performances and 
mapping leaf water content have been discussed in the next section. 



Proceedings of the 16th International Conference on Precision Agriculture 
21-24 July, 2024, Manhattan, Kansas, United States  

11 

 
Fig 6. Scatterplots of measured vs. estimated leaf RWC obtained using GA-PLSR for (a) training and (b) cross-validation. 
The R2 and RMSE values of the linear fit has been shown displayed for these scatterplots. The markers are colored based 

on the date of data acquisition. GA-PLSR- Genetic algorithm-inspired partial least squares regression. 

DISCUSSION 

Performance comparison of models 
A comparison of results (Table 1) indicated the estimating ability of discussed models important 
to spatially map the sesame water status using remotely acquired imagery. Linear regression for 
each hyperspectral band displayed a max R2 of 0.30 and min RMSE 1.40 % on only one date (57 
DAE). Similarly, linear regression using TIR-derived CWSI had the best fit on 74 DAE (R2 = 0.25), 
but the RMSE was minimum for 51 DAE (RMSE = 1.29 %). Regression using NDSI values 
exhibited a max R2 = 0.60 on 57 DAE and min RMSE = 0.93 % on 51 DAE, comparable to the 
GA-PLSR technique. However, these results were obtained only for single date. Comparison 
among RF (R2 = 0.42, RMSE = 1.25 %) and GA-PLSR (R2 = 0.60, RMSE = 1.76 %) revealed the 
robustness of GA-PLSR for estimating leaf RWC and spatially mapping for sesame plot pixels as 
discussed in next subsection. 

Table 1. Comparison of the performance metrics used in spectral estimation of sesame leaf RWC. 

Spectral estimation 
technique Max R2 Observed 

on 

Min 
RMSE 

(%) 

Observed 
on 

For hyperspectral datasets 

Linear regression 0.30 57 DAE 1.40 57 DAE 

NDSI regression 0.60 57 DAE 0.93 51 DAE 

RF regression (c.v.) 0.42 All dates 1.25 All dates 

GA-PLSR (c.v.) 0.60 All dates 1.76 All dates 

For TIR-derived CWSI datasets 

Linear regression 0.25 74 DAE 1.29 51 DAE 
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Hyperspectral vs. CWSI images for estimating RWC 
Assessment of the best performing sesame leaf RWC estimation using TIR-derived CWSI and 
hyperspectral reflectance images, implemented for 74 DAE of data acquisition, provided a 
comparable result (Table 2). A plot-wise analysis of mean estimated RWCs and their absolute 
deviation from measured RWCs indicated higher deviations for sesame plots numbered 2, 13, 
15, 16 and 19 estimated from hyperspectral as well as CWSI datasets. A possibility of gradient in 
irrigation can be assumed for spatial proximity of plots 15, 16 and 19 with reduced RWC 
estimations. Plots 1, 2, 15, 16 displayed higher deviations for RWCs derived from CWSI image 
compared to hyperspectral reflectance. This can be attributed to coarser spatial resolution for 
thermal data acquisition resulting in addition of noise. The standard deviation (s.d.) obtained from 
the mean estimated values indicated a reliable predictability of leaf RWC from hyperspectral 
image (s.d. = 1.17) compared to TIR-derived CWSI image (s.d = 1.43). It must be noted that RWC 
estimation technique implemented using hyperspectral datasets was train-test based on learning 
spectral features across all data acquisition dates, while using CWSI was based only for 74 DAE.  

Table 2. Comparison of measured leaf RWC with mean of RWC estimated using hyperspectral and TIR-derived CWSI 
imageries acquired on 74 DAE for individual sesame plots. The absolute deviation of mean estimated RWC from measured 

RWC have been provided for standard deviation (s.d.) analysis. 

Plot 
no. 

Measured RWC 
(in %) 

Mean of estimated RWC values per plot (in %) Absolute deviation of mean estimated RWC from 
measured RWC (in %) 

From hyperspectral 
image From CWSI image From hyperspectral 

image From CWSI image 

1 80.70 81.27 79.76 0.57 0.94 

2 84.40 82.77 82.02 1.63 2.38 

3 81.00 80.50 80.56 0.5 0.44 

4 81.10 80.71 81.37 0.39 0.27 

5 82.00 80.82 81.32 1.18 0.68 

6 81.70 80.14 81.64 1.56 0.06 

7 79.50 80.34 78.89 0.84 0.61 

8 81.50 82.57 82.18 1.07 0.68 

9 80.20 79.27 79.34 0.93 0.86 

10 81.80 81.10 81.81 0.7 0.01 

11 82.00 80.63 81.78 1.37 0.22 

12 80.80 79.18 80.65 1.62 0.15 

13 81.30 79.38 79.81 1.92 1.49 

14 82.50 84.34 82.31 1.84 0.19 

15 73.90 79.02 80.25 5.12 6.35 

16 80.90 82.07 82.14 1.17 1.24 

17 82.30 80.80 81.23 1.5 1.07 

18 80.70 79.30 82.08 1.4 1.38 

19 82.40 78.11 79.76 4.29 2.64 

20 82.30 83.40 81.76 1.1 0.54 

   s.d. for all 
sesame plots 1.17 1.43 
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Summary and Conclusion 
In this study, leaf RWC was estimated from hyperspectral and thermal UAV-borne imagery of an 
experimental sesame field using paradigms of spectral estimation techniques- regression using 
spectral bands, NDSIs, random forest and GA-PLSR. Hyperspectral band based linear regression 
identified one wavelength having a correlation with RWC. TIR band provided a comparatively 
reduced model fit than hyperspectral bands in the VIS and NIR regions. Regression using NDSIs 
highlighted two-band combinations that provided a best fit for estimating water content. These 
techniques, however, provided the best results only for one date of data acquisition. ML models- 
RF regression and GA-PLSR iteratively trained on 70 % and cross-validated on 30 % of dataset 
performed better than the previous-mentioned techniques. RF regression had reduced 
performance metrics due to a limited number of data samples used. However, the GA-PLSR 
showed a stable result with minimized contrast between training and cross-validation. 
The results obtained were analyzed and the best approaches were examined for UAV-borne 
imagery on one of the data acquisition dates (74 DAE) to map the average leaf RWC for each 
sesame plot. It was observed that both hyperspectral dataset-based GA-PLSR and thermal 
dataset-based linear estimation performed comparatively well, though the variation among the 
RWC estimation (represented through s.d.) was lesser for hyperspectral estimations. It must be 
further noted that the thermal datasets provided best results only at one date. This expresses the 
robustness of GA-PLSR and ML models for remote estimation of crop water status. 
Further studies would be conducted on the ability of remote estimation techniques to distinguish 
the irrigated and stressed crops for a growing season. This could provide more insights on the 
crop-water dynamics and give informed decisions to growers and producers for an irrigation 
management with reduced agricultural carbon footprint. 
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