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Abstract.  
Grain protein content (GPC) is a key determinant of the prices that grain growers receive, and the 
rising cost of production is shifting management focus towards optimizing this to maximise return 
on investment. Harvester-mounted grain protein sensors have been used to map grain protein 
on-the-go for more than 20 years (e.g. CropScan, John Deere). While there is growing interest in 
measuring and mapping within-field GPC to better understand variability and support 
management decisions, the uptake of these sensors has been slow and GPC maps are not 
available for every field, farm, or season, resulting in considerable gaps. There is the potential to 
utilize this grain protein sensor data to understand the nature and drivers of variability in GPC for 
improved management. Further, utilising dense yield and GPC data layers together provides an 
opportunity to explore local relationships between each to guide management decisions which 
optimize both yield and quality. In this work, we present the use of GPC sensor data for winter 
wheat from across 46 fields over 4 seasons (2020 – 2023; i.e. 63 FieldYears worth of data in total) 
across Western Australia and northern New South Wales, Australia, for mapping and modelling 
GPC. This study aims to 1) create a model to predict GPC in fields without a grain protein sensor, 
by a) using readily available yield, agronomic, and publicly-available data, b) validating model 
performance using two different validation approaches (leave-one-FieldYear-out cross validation, 
LOFYOCV, and two-fold cross-validation, 2FCV); and c) mapping predictions at different spatial 
resolutions (fine 30 m resolution, management zones); and 2) assess the relationship between 
GPC and wheat grain yield, both spatially and temporally, within fields. This research utilises a 
data-driven, machine learning (Random Forest) approach to process multiple layers of yield, 
agronomic (e.g. sowing and harvest dates, cropping history) and publicly-accessible data (e.g. 
digital elevation model, terrain attributes, satellite remote sensing imagery) into a useful format 
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for growers by predicting GPC within fields. The LOFYOCV and 2FCV approaches, which were 
used to simulate instances where grain protein sensor data is not available for parts-of (2FCV) or 
an entire field (LOFYOCV), demonstrated the potential to fill gaps and predict GPC across fields 
with little-or-no protein sensor data using readily available data layers. Results showed that a 
combination of yield, agronomic and publicly-available data layers produced the best quality 
predictions of GPC. Local correlations between GPC and yield were not always inverse, which is 
contrary to what is commonly expected, and varied spatially and season-to-season in both 
strength and distribution within a field. Overall, this research highlights the potential of utilizing 
readily available data layers to predict and map GPC, and demonstrates the value in utilizing GPC 
maps and sensing technologies to better understand variability and inform management 
decisions.  
Keywords.   
Precision agriculture, grain protein content, machine learning, grain protein sensor, yield  
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Introduction  
Grain protein content (GPC) is one of the key determinants of the prices that grain growers 
receive. Like grain yield, within and between field variation of GPC is widespread (Figure 1). Grain 
protein content is determined by a range of genetic, environmental and management factors, 
including grain crop type, crop variety, nitrogen (N) in the soil and applied as fertiliser, and soil 
moisture availability throughout the growing season (Whelan and Taylor 2013). Accurately 
measuring and mapping GPC within a field, across a farm, and over multiple seasons, can be 
useful to better understand the nature and drivers of variability in GPC, manage the quality of 
marketed grain, and better understand, evaluate, and improve N nutrition decisions (Whelan 
2019).  
Harvester-mounted grain protein sensors have been used to map grain protein on-the-go for more 
than 20 years (e.g. CropScan), and in 2023, John Deere commercially released the HarvestLab 
3000TM Grain Sensing system in Australia for real-time, on-the-go measurement of protein, starch, 
and oil values for wheat, barley, and canola. The sensor is mounted onboard the harvester and 
uses near infrared (NIR) spectroscopy to take measurements of continuous grain flow. The sensor 
emits radiation which passes through a glass window onto the grain sample. A portion of this 
radiation is absorbed by the grain, while some is reflected back to the sensor. This NIR reflectance 
is then measured, and the wavelengths are analyzed and used to determine properties such as 
grain protein, oil, or moisture content.  
While there is growing interest in measuring and mapping within-field GPC to better understand 
variability and support management decisions, the uptake of these sensors has been slow and 
GPC maps are not available for every field, farm, or season. This is resulting in considerable 
knowledge-gaps. There is the potential to utilize this grain protein sensor data to understand how 
and why GPC varies and to improve management. By building a predictive model to predict GPC 
in fields without a grain protein sensor, growers and advisors can be equipped with the necessary 
information and tools to make better management decisions for more profitable and 
environmentally sustainable production systems. Together with grain yield maps, GPC maps can 
provide an opportunity to make future N management decisions and optimize both yield and 
quality, for example. Maps of GPC can be used in conjunction with wheat gain yield maps, input 
costs, and the final grain price to map gross margins and better understand the costs of variable 
GPC. Likewise, GPC maps can be useful to understand N dynamics and agronomy, including 
variation in N availability and the implications of fertilizer decisions prior to or during the growing 
season. Improving this understanding can have positive outcomes for on-farm economics, 
production efficiencies, and environmental sustainability.  
Today, we have vast amounts of public data that is free to access, including remote sensing 
imagery. These data layers can represent variability and the factors driving GPC, including soil 
constraints or nutrient deficiencies, both within a season and over longer timescales. These 
publicly-available data layers can be used on their own, or in conjunction with on-farm data such 
as yield maps or cropping history information, to model and map GPC.  
We present a data-driven, machine learning approach which utilizes a combination of yield, 
agronomic, and/or publicly-available data layers to model and predict GPC within fields and fill 
knowledge gaps across farms. The aims of this research were to:  

1) Create a model to predict GPC in fields without a grain protein sensor, by:  
a. Using readily available yield, agronomic, and publicly-available data;  
b. Validating model performance using two different validation approaches; and 
c. Mapping predictions at different spatial resolutions.  

2) Assess the relationship between GPC and wheat grain yield, both spatially and temporally, 
within fields.  

This research aims to demonstrate the value of collecting grain protein data, and the use of this 
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information alongside the growing amount of on-farm and publicly-available data layers to better 
understand and manage GPC.  

 
Figure 1. Spatial variation of wheat grain yield (t/ha, a) and wheat grain protein content (%, b) across a farm.  

Methods  

Study area  
We present the use of grain protein sensor data for mapping and modelling the GPC of winter 
wheat between 2020 and 2023 across two large broadacre, dryland farms in Western Australia 
(WA) and northern New South Wales (NSW), Australia (Figure 2). Wheat grain yield and protein 
sensor data was collected at harvest for each season onboard harvesters equipped with the John 
Deere HarvestLab 3000TM NIR spectroscopy sensor. All yield and protein data points were 
collected at the same locations on each pass, and each yield/protein map was assigned a unique 
FieldYear identifier which represented the respective field name and season. There was 22 
FieldYears worth of data for the NSW aggregation, and 41 for the WA aggregation. Fields ranged 
from 44 – 1248 hectares (ha) in size. 
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Figure 2. Map of farm aggregations in Western Australia and northern New South Wales, Australia.  

Experiments  
We now have access to vast amounts of on-farm and publicly-available data that can be used to 
represent variability and the factors that drive GPC. Different combinations of yield, agronomic 
and/or publicly-available data layers were used with machine learning (Random Forest) models 
to predict and map grain protein content (Table 1). All yield and agronomic data was accessed 
via Precision Cropping Technology (PCT) AgCloud. All publicly-available data layers were 
accessed via the R package ‘dataharvester’ (Harianto et al. 2023), and are available for every 
field and farm across Australia. Modelling was performed for five Experiments using different 
combinations of yield, agronomic, and publicly-available data (Table 1):  

1) Experiment 1: Yield + Agronomic + Publicly-available  
2) Experiment 2: Publicly-available  
3) Experiment 3: Agronomic + Publicly-available  
4) Experiment 4: Yield + Publicly-available  
5) Experiment 5: Yield 

 
Table 1. On-farm and publicly available data layers for modelling grain protein content using machine learning (Random 
Forest) models. 

Data Source Data category Data layers 
Yield PCT AgCloud Yield  
Agronomic PCT AgCloud Field data Sowing Date 

Harvest Date 
Variety 

Cropping History 1 season prior 
2 seasons prior 
3 seasons prior 

Publicly-available dataharvester Remote sensing 
 
Sentinel 2A, 10 m 
spatial resolution 

Current season 
maximum 

Normalised Difference Vegetation Index (NDVI) 
Normalised Difference Red Edge (NDRE) 
Enhanced Vegetation Index (EVI)  

Long-term averages EVI: 1, 5, 10 year averages 
NDVI and Red band: 5th, 50th, 95th percentiles  

Bare earth Imagery 
Terrain attributes Radiometrics Dose Rate, Thorium, Uranium, Potassium 

Digital Elevation Model 
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Validation approaches  
Grain protein sensors may not be available across all fields, farms, or for every season. In some 
cases, entire fields may not have maps of GPC. In other cases across large fields where multiple 
headers are operating (e.g. in Australia or the United States of America), only one header may 
be equipped with a grain protein sensor. This leaves information gaps across parts-of for an entire 
field. These two scenarios were tested using two validation approaches (Figure 3):  

1) A leave one FieldYear-out cross validation (LOFYOCV, Figure 3 a) method, which was 
used to simulate cases where grain protein sensor data was not available for an entire 
field; or  

2) A two-fold cross validation (2FCV, Figure 3 b) method was used to simulate cases where 
only one header is equipped with a grain protein sensor, and GPC data is only available 
for part (half) of a field. 

 
Figure 3. Leave-one-FieldYear-out cross-validation (LOFYOCV, a) and two-fold cross-validation (2FCV, b) approaches used 

in this study. 
 
The LOFYOCV method involved removing all data for one FieldYear combination, using this as 
the validation dataset, and leaving the remaining FieldYears as the calibration dataset to build the 
Random Forest model (Figure 3 a). This LOFYOCV method was repeated for all FieldYear 
combinations (i.e. a total of 22 for the NSW aggregation, and 41 times for the WA aggregation). 
The 2FCV method was used to simulate instances when GPC data is only available for part of a 
field (e.g. there are two headers and only one header is equipped with a GPC sensor). In the 
2FCV approach, each field was split into 10 equal areas based on Longitude and allocated 
alternating as either “even” or “odd”. The “even” allocated data for each FieldYear was removed 
and used as the validation dataset. The “odd” portion of the current FieldYear and all other 
FieldYears across the aggregation were used as the calibration dataset to build the RF model 
(Figure 3 b). This 2FCV method was repeated for both the “even” and “odd” halves of all FieldYear 
combinations (i.e. a total of 44 times for NSW, and 82 times for WA).  
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Validation scale  
Predictive models for GPC were then built and grain protein maps were produced for each 
Experiment and Validation approach. Predictions were made at a fine (30 m) resolution, and were 
also aggregated to management zones within each field to reduce noise and provide maps of 
GPC that are more informative for management decisions such as for N removal and prescription 
maps. Yield data for the current season was used to aggregate each field into five management 
zones using k-means clustering.   

Moving window correlations 
Local correlations between wheat grain yield and protein content in a 100 m moving window were 
mapped within each field to investigate their relationship. A 100 m moving window was used to 
balance sample size with computational efficiency, and a 100 m buffer was used around the field 
boundary to limit potential edge effects.  

Results and discussion 

Model quality and performance  
The model quality was assessed by calculating the root-mean-square error (RMSE) and the Lin’s 
Concordance Correlation Coefficient (LCCC). The RMSE represents the accuracy of the 
predictions (how close the predictions are to the true values) and provides a measure of prediction 
accuracy in the variables units. The LCCC is a measure of both the precision (how close the 
predictions are to each other) and the accuracy of the predictions. The LCCC value explains the 
fit of the observed and predicted values to a 1:1 line, where values of 0 are a poor fit (poor 
agreement between observed and predicted values) and 1 for a perfect fit (perfect agreement 
between observed and predicted values). The LCCC is unitless and is useful for comparing the 
precision and accuracy of predictions between variables of different magnitudes (Lin 1989).  
Model quality statistics (RMSE and LCCC) for each Experiment, Validation approach, and 
Validation scale in both WA and NSW are presented in Figure 4. Overall, Experiment 1 (yield + 
agronomic + publicly-available) performed best for both WA and NSW, indicating that a 
combination of both on-farm and publicly-available data layers are needed to produce the best 
quality predictions of GPC. As the best performer, only results for Experiment 1 are presented in 
Figures 5 and 6. By far, Experiment 5 (yield) performed the worst overall, as expected.  
Model quality improved for all Experiments in both NSW and WA when predictions were 
aggregated to management zones compared to validation at a fine-resolution. Unsurprisingly, the 
2FCV approach performed better than the LOFYOCV approach overall. Model quality was 
generally better for WA than for NSW, which may be attributed to the higher variability in GPC for 
the NSW aggregation (coefficient of variation, CV = 0.18) compared to WA (CV = 0.14).  
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a) NSW 

 

 
b) WA 

 

 
 

Figure 4. Lins Concordance Correlation Coefficient (LCCC) and Root Mean Square Error (RMSE) values for a) northern 
New South Wales (NSW) and b) Western Australia (WA) aggregations for five Experiments, validated at a Fine-resolution 

(FineRes) and aggregated to management zones (MgmtZone) using a leave-one -FieldYear-out cross-validation (LOFYOCV) 
and two-fold cross-validation (2FCV) approach.  
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Figure 5. Observed and predicted values of grain protein content (GPC) from Random Forest models for Experiment 1 

(Yield + Agronomic + Publicly-available) for northern New South Wales (NSW, a and b) and Western Australia (WA, c and d) 
aggregations. Models were validated using leave-one-FieldYear-out cross validation (LOFYOCV, a and c) and two-fold 

cross-validation (2FCV, b and d). Lins Concordance Correlation Coefficient (LCCC) and Root Mean Square Error (RMSE) 
values are presented for each aggregation and validation approach.  

 
While fine-resolution maps of grain protein provide a high degree of detail describing the spatial 
variability of GPC, these may be difficult to use to make operational decisions. When 
implementing precision agriculture (PA) practices, it is common to divide a field into management 
zones. Aggregating GPC predictions into management zones can smooth small-scale noise and 
may be useful for informing management decisions such as N prescription maps.   
Figure 6 shows a comparison of observed and predicted GPC values for two fields in WA at a 
fine-resolution and aggregated to five management zones (Figure 6 g) based on yield data for the 
current season. Predicted values are presented for the LOFYOCV (Figure 6 b and e) and 2FCV 
(Figure 6 c and f) methods.  
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Figure 6. Observed and predicted values of wheat grain protein content (%) at a fine-resolution and aggregated to five 

management zones (g) for two fields in Western Australia. Predicted values are presented for the leave-one-FieldYear-out 
cross-validation (LOFYOCV, b and e) and two-fold cross-validation (2FCV, c and f).  

Validation approaches  
Compared to random K-fold cross validation strategies, which involve randomly splitting 
observations into K-equal random training and test subsets without assuming any spatial structure 
in the data, spatial cross-validation methods such as LOFYOCV can provide a more reliable 
measure of model prediction accuracy, and provide more realistic measures for predicting 
unknown locations (Christy 2008; Stevens et al. 2012; Filippi et al. 2020; Habibi et al. 2024). As 
expected, ignoring the spatial dependence of the data can underestimate model prediction errors 
(Ruß and Brenning 2010; Ferraciolli et al. 2019) and result in poor predictions in unknown 
locations. Despite the poorer validation statistics of the LOFYOCV approach compared to the 
2FCV in this analysis, it is evident that the spatially-aware (Habibi et al. 2024) LOFYOCV method 
is a robust validation strategy that can provide a more realistic and reliable assessment of model 
performance for predicting GPC on unseen fields.  
Model quality was better when the 2FCV method was used compared to the LOFYOCV method, 
as expected. The 2FCV approach involved splitting each FieldYear into two alternating halves 
based on Longitude. While the 2FCV method is not entirely spatially independent, as FieldYear-
level agronomic information such as variety, sowing, and harvest dates for the current season are 
common across the “odd” and “even” halves of each FieldYear, this is not undesirable in the 
context of utilizing existing grain protein data to fill-in knowledge gaps within fields with incomplete 
grain protein maps, and the spatial structure in the dataset is still considered by splitting the 
training and test datasets via spatial blocks based on Longitude. Incorporating valuable field-
specific information describing seasonal-interactions between grain protein and environmental 
(e.g. rainfall or temperature), soil conditions (e.g. constraints or moisture), or management 
implications (e.g. variety choice, fertiliser application) is important for capturing and describing 
variability in GPC and for improving model predictive performance to fill-in knowledge gaps within 
fields. This demonstrates that predictions of grain protein may be improved if at least some 
harvest data within a field is collected for the current season.  
As highlighted by Smith et al. (2023) when implementing a similar leave-one-group-out cross-
validation approach for developing transferrable remote-sensing pasture estimates using a group 
of experimental plots, the 2FCV method implemented here may be more an interpolative 
evaluation rather than extrapolative as the training and test halves of each FieldYear are located 
closely to each other and the spatial domain of the model is similar to where predictions are being 
made. What is missing from this analysis, however, is interpolation solely within a field. The 2FCV 
approach can also be used to fill in gaps within a field by using data from the “odd” half of a field 
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to predict the “even” half, thus using data from just that one field only. This is operationally more 
useful for a single season when harvest data is incomplete. Future work should consider if we 
can interpolate for missing data within a single field, which may include the incorporation of 
kriging.  

Experiments and available data  
While the uptake of grain protein sensors is increasing, it is unlikely that we will see a map of GPC 
for every field, farm, or season in the near future. Here, we highlight the potential to use existing 
yield, agronomic and publicly-available data layers to model and map GPC to fill-in previously 
unmapped areas of a farm. Publicly-available data layers were chosen to represent the factors 
that drive variability in GPC, meaning that bespoke soil samples or Electromagnetic (EM) surveys, 
for example, are not required for individual fields and growers should not be burdened with 
additional data collection. Further, this approach did not aim to produce a bespoke model for 
every field, and instead one model was built for each aggregation. For the LOFYOCV approach, 
the addition or more fields and seasons worth of data within an aggregation should improve model 
performance by capturing a greater range of growing conditions. If several seasons of yield and 
protein data can be collected which represent a range of environmental conditions and 
management scenarios, it is likely that we will be able to map previous seasons worth of GPC 
data to better understand long-term trends, or make forecasts for the current season. For the 
2FCV approach, within field interpolation should be explored in future when mapping grain protein 
within a single field for a single season when harvest data is incomplete.  

Yield-Protein relationship  
Overall, model quality for both the WA and NSW aggregations was moderate-to-good, but it is 
still unclear what is driving this variability. The factors driving grain protein content predictions 
within models will be examined in future research, but seasonal fluctuations in environmental 
conditions and management decisions may influence predictions between fields and seasons. 
High-yielding, high-protein grain may be desirable in some markets, but grain yield and protein 
are understood to be negatively correlated (Terman et al. 1969). This inverse relationship is 
generally the result of grain protein dilution by total carbohydrates, which is predominately driven 
by soil moisture and N availability. In non-limiting soil moisture situations, increasing the soil N 
supply will typically increase grain yield, whereas increasing the N supply where soil moisture is 
severely limited will typically increase grain protein (Whelan et al. 2009). Generally, high yield/low 
protein at harvest may be the result of sub-optimal N management, whereas low yield/high protein 
may be the result of a lack of soil moisture supply and a dry finish (Scott 2022). Other factors such 
as variety, environmental conditions, and soil constraints may also influence the grain 
yield/protein relationship.  
Local correlations between wheat grain yield and protein content in a 100 m moving window were 
mapped within each field to investigate their relationship (Figure 7). While an inverse yield-protein 
relationship was expected and was observed across the entire dataset overall, moving window 
yield-protein correlation maps showed considerable variation within fields. The strength and 
direction of the relationship between yield and protein was highly variable both within and between 
fields, farms, and seasons, and Spearman-Rank correlations within the moving windows ranged 
between – 0.94 and + 0.94. Future work is needed to better understand this relationship, including 
better understanding how and why this dynamic varies within and between fields, farms, and 
seasons, and subsequent management options to optimize this dynamic.   
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Figure 7. Observed Wheat grain yield (t/ha; a) and Protein content (%; b) values for two fields in WA, and yield-protein 

correlations in a 150 m moving window across each field (c). Values closer to -1 (black) indicate a negative relationship 
between yield and protein, whereas values closer to 1 (white) indicate a positive relationship between yield and protein.   

Future directions  
Future work aims to investigate yield-protein relationships further through the use of interpretive 
machine learning models and additional data layers. Typically, machine learning models like 
Random Forest models are considered a “black box”, where it can be difficult to understand what 
factors are driving predictions within the model. Interpretive machine learning can be used to 
overcome this limitation. Interpretive machine learning refers to a collection of techniques 
developed to identify the importance of individual predictors in a model and determine what was 
used to make a prediction (Jones et al. 2022). Interpretive machine learning has been used to 
identify the causes of crop yield variability in cotton (Jones et al. 2022), where digital soil maps 
and terrain information was used to map cotton lint yield and interpretive machine learning was 
then used to identify the contribution of each predictor variable to the modelled yield prediction. 
Interpretive machine learning can be used to understand what may be driving variations in GPC 
and what may explain these changing relationships between yield and protein within and between 
fields, farms, and seasons. By identifying the contribution of each variable to modelled grain 
protein predictions, we can then map the major drivers of grain protein content within a field and 
across farms. Applying this over multiple seasons may also help to identify any seasonal 
fluctuations or changes in the drivers of grain protein over time.  

Conclusion 
In the absence of grain protein sensor data, a combination of yield, agronomic and publicly-
available data layers can be used to build a predictive model to map GPC. In this study, for each 
of the five Experiments tested, Random Forest models for GPC were validated using either a 
LOFYOCV or 2FCV approach at a fine (30 m) resolution or aggregated to management zones. 
Model performance was moderate-to-good overall and a combination of yield, agronomic and 
publicly-available data layers produced the best quality predictions of GPC. As expected, model 
quality improved when predictions were validated using 2FCV compared to LOFYOCV, and 
performance also generally improved when predictions were aggregated from a fine-resolution to 
management zones. Spatial correlations between GPC and yield varied spatially and season-to-
season, and these correlations fluctuated in both strength and distribution across a field. The 
LOFYOCV and 2FCV methods utilised here provide a robust and more realistic assessment of 
model performance for predicting GPC on unseen fields. These spatial validation strategies also 
highlight the potential to fill gaps and predict GPC across fields with little-or-no protein sensor 
data using readily available data layers. Future work will investigate the use of interpretive 
machine learning to better understand the drivers of variability in wheat GPC, and the yield-protein 
relationship between fields, farms, and seasons.  
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