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Abstract.  
Winter wheat (Triticum aestivum L.) is one of the most important crops in the world. Due to the 
changing climate conditions, winter wheat yield becomes more hectic. The goal of this study is to 
compare and analyze the Normalized Difference Vegetation Index (NDVI) values derived from 
the GreenSeeker handheld crop sensor and MicaSense RedEdge-MX Dual Camera System data 
at six different measurement times and to examine the relationship between NDVI values and 
yield over the 2021-22 and 2022-23 seasons. The research field was located in 
Mosonmagyaróvár, in the north-western region of Hungary, part of the European Union. The 
small-scale field trial included four treatments (Environmental: N-135.3, P2O5-77.5, K2O-0; 
Balance: N-135.1, P2O5-91, K2O-0; Genesis: N-135, P2O5-75, K2O-45; and Control: N, P, K 0 
kg/ha) and four replications with a randomized block design in winter wheat. The measurements 
were conducted from mid-April (5 Feekes growth stages) to harvesting (11 Feekes growth 
stages). The aim was to determine the strongest positive correlation between the yield of winter 
wheat and NDVI values derived from two sensors. The results showed a significant difference 
(p≤0.05) between the Control and the other treatments (Environmental, Balance, Genesis) in the 
NDVI values obtained from GreenSeeker measurements at all times in both years. Similar 
findings were observed regarding NDVI values calculated from the MicaSense camera data. 
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However, May 12 could not demonstrate a significant difference (p≥0.05) between the treatments 
in the 2021-22 and 2022-23 seasons. Yield estimation based on NDVI values showed that the 
expected yield could be most accurately determined on the 226th day after sowing. These results 
support selecting suitable sensors and determining the optimal yield estimation time to achieve 
more reliable in-season prediction outcomes. Moreover, using the portable GreenSeeker allows 
for better monitoring of growth parameters and predictive grain yield of winter wheat compared to 
NDVI values calculated from MicaSense camera data. 
Keywords.   
NDVI, MicaSense RedEdge-MX Dual Camera System, GreenSeeker HCS-250, winter wheat, 
yield prediction 

Introduction 
Winter wheat (Triticum aestivum L.) plays a key role in global food security (Shiferaw et al., 2013). 
It is one of the most important cultivated plants in Hungary (Bognár et al., 2017); therefore, 
monitoring the vitality of crops during the whole growing season is crucial to increasing yield and 
reducing inputs and costs (Brisco et al., 1998). Vegetation indices, derived from the values of 
different wavelength spectra reflected by plants, provide good opportunities for monitoring plant 
development in the vegetation period (Wang et al., 2010).   
The Normalized Difference Vegetation Index (NDVI) is one of the most popular and frequently 
used vegetation indices, known for its versatility. NDVI values could be used to estimate the 
expected yield (Lofton et al., 2012; Aranguren et al., 2020; Walsh et al., 2022) and protein content 
(Walsh et al., 2022). Furthermore, NDVI is also suitable for monitoring foliage disease (Bhandari 
et al., 2020), assessing plant development (Duan et al., 2017), assessing chlorophyll content 
(Khadka et al., 2021), or developing nitrogen management strategies and evaluating nitrogen use 
efficiency (Bijay-Singh et al., 2011; Jiang et al., 2021). The NDVI values could be calculated from 
reflectance at near-infrared (NIR) and red band (Tucker, 1979). 
Low-cost active sensors have been developed for small-scale plot experiments. One of the most 
reliable devices is the GreenSeeker handheld sensor, which can monitor vegetation development 
and examine biomass changes by NDVI values (Ali et al., 2014; Lake et al., 2016).  
Many studies have been conducted using this portable sensor in alfalfa (Tang et al., 2022), where 
the GreenSeeker demonstrated significant potential in distinguishing inoculation treatments in the 
field. Additionally, there have been studies also in cabbage (Ji et al., 2017), maize (Verhulst et 
al., 2011), ryegrass (Wang et al., 2019), rice (Ali et al., 2014), wheat (Bijay-Singh et al., 2011; 
Duan et al., 2017; Aranguren et al., 2020) and sugarcane (Lofton et al., 2012). Despite numerous 
studies conducted on plant monitoring, a notable disadvantage of the GreenSeeker handheld 
sensor is its limited temporal and spatial resolution. Data collection with this device is time-
consuming and prone to subjective measurement errors (Schirrmann et al., 2016).  
The development and adaptation of unmanned aircraft systems (UAS) provide new opportunities 
for non-destructive data collection, offering an alternative to time-consuming manual ground-
based methods (Shi et al., 2016). Drones with various cameras can survey extensive areas and 
capture superior spatial and temporal resolution images. Additionally, unmanned aircraft systems 
offer significant advantages in terms of time efficiency and flexibility in flight planning (Walsh et 
al., 2018). However, selecting the camera according to the user's requirements is essential during 
data acquisition (Lu et al., 2020),  
Nowadays, multispectral cameras are widely utilized in various research applications, including 
studies on soybean (Maimaitijiang et al., 2020), spring wheat (Shafiee et al., 2021; Veverka et al., 
2021), durum wheat (Kyratzis et al., 2017), and winter wheat (Hassan et al., 2019). These 
multispectral cameras enable the examination of different crop parameters in time-series 
analyses, contributing to the prediction of yield and quality (Walsh et al., 2018; Maimaitijiang et 
al., 2020; Shafiee et al., 2021). 
The objectives of this study were: (1) comparison of NDVI values derived from the GreenSeeker 
and the MicaSense camera data in winter wheat during the 2021-22 and 2022-23 period; (2) to 
predict the expected yield in different phenological stages for two sensors under different fertilizer 
application rates. 
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Materials and Methods 

Site description 

The research field (Figure 1) was located in Mosonmagyaróvár (N 47°8′67.89″ E 17°26′9.94″), in 
the northwestern region of Hungary in Europe, at an elevation of 119 meters above sea level. The 
two-year small-scale field trial was examined from April to the end of June in the 2021–2022 and 
2022–2023 growing seasons.  

 

Figure 1. Location and arrangement of the experiment plots in the northwestern part of Hungary, Europe. The small-scale 
field trial included four treatments (Control, Environmental, Balance and Genezis) and four replications of each treatment.   

The field experiment was conducted in a randomized block design with four replicates and four 
treatment levels, each differing fertilizer application rate (Figure 1). The size of the experimental 
plot was 4.2 × 22.0 m. The plots were sown with winter wheat, and the green crop was 
rapeseed (Brassica napus L.). 
Winter wheat was sown on October 25 in both years. The seeds were sown in rows with a space 
of 12cm. The seeding rate was set at 4.5 million seeds per hectare. Fertilization was carried out 
in two parts, with sowing on October 25 for 2021 and 2022 and again on March 1 for 2022 and 
2023. The applied active nitrogen substance was consistent at 135 kg/ha in different treatments 
(Environmental-135.3 kg/ha, Balance-135.1 kg/ha, Genezis-135 kg/ha). The active phosphorus 
substance was in Environmental 77.5 kg/ha, Balance 91 kg/ha, and Genezis 75 kg/ha. In the 
Genezis treatment, 45 kg/ha potassium was too. The harvesting was meticulously executed, 
involving the separate harvesting of the yield from a designated section of each plot, measuring 
2.4 meters by 22.0 meters, using a Sampo SR2010 plot combine, a reliable and widely used 
combine harvester in agricultural research. 
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Data collection 
Image acquisition were on six different dates from April to the end of June 2022 and 2023, aligning 
with Feekes growth stages from 5 to 11 (Large et al., 1954). Data collection employed two 
platforms: the GreenSeeker (NTech Industries, Trimble, Sunnyvale, California, USA) and the 
MicaSense RedEdge-MX Dual Camera System (MicaSense Inc., Seattle, Washington, USA) 
mounted on a DJI Matrice 210 V2 drone (Da-Jing Innovation, Nanshan, Shenzhen, China). 
Ground-level measurements were conducted using the GreenSeeker Model HCS-250, a manual 
active optical sensor. The Normalized Difference Vegetation Index (NDVI) readings from the 
GreenSeeker were collected at three predefined GPS coordinates for each plot. According to 
Zhitao et al. (2014) study, the sensor was held at approximately 60 cm above the canopy to 
accurately represent NDVI values for a 0.5 m² area. According to the methodology by Wang et 
al. (2019), these measurements were performed three times per plot, with each instance 
comprising an average of ten NDVI readings. 
The image acquisition were April 12, April 28, May 12, May 24, June 7, and June 21 in 2022. The 
exact schedule was maintained for 2023, although starting from the third session, there was one- 
or two-days derogation between measurements date due to the rainy weather conditions. Each 
drone flight lasted between 2 and 3 minutes, the images captured consistently between 11:30 
and 12:00 to maintain uniform environmental conditions according to Zhitao et al. (2014). The 
flight altitude was set on 40 meters, with 2.9 cm per pixel ground resolution. 
The flight paths were planned with a 70% overlap both frontally and laterally. During each session, 
48 triggers in ten spectral bands were activated, resulting in 480 multispectral images per flight. 
A calibration panel was photographed before and after each flight session to control for lighting 
variations at different times of the day (An et al., 2016). 
Before the first mission, four ground control points (GCPs) were established on the experimental 
site to support precise geo-referencing. The coordinates of these GCPs were determined using a 
South S660N GPS RTK Receiver (South Surveying & Mapping Instrument Co., Ltd., Beijing, 
China).  

Data and statistical analysis 
The raw images underwent a meticulous process in Agisoft Metashape Professional (version 
2.0.1) to create ortho-mosaic images. This software's standard workflow, with minor adjustments 
in quality settings, was meticulously followed. The resulting ortho-mosaic images, saved in *.tiff 
format using the WGS84 coordinate system, boasted a defined pixel size of 2 × 2 cm, ensuring 
precision in our data analysis. 
QuantumGIS (version 3.22), an open-source GIS software, was used for further data analysis. 
The first step is calculating NDVI values by the red and near-infrared (NIR) bands according to 
the following equation (1): 

NDVI= (NIR-Red)
(NIR+Red)

       (1) 

where: 
NIR = near-infrared wavelength 
Red = red wavelength 

The statistical analyses were conducted with utmost thoroughness using R statistical software, 
with a specific focus on the 'rcompanion' package (RCore, 2020). This comprehensive approach 
ensured the robustness and reliability of our results, instilling confidence in the validity of our 
findings. 
In the first step (1), descriptive statistics were used to analyse the NDVI values derived from the 
data of two sensors concerning treatments and six measuring times. 
In the second step (2), NDVI values derived from the MicaSense multispectral camera and 
GreenSeeker data were compared using a two-sample t-test, assuming equal or unequal 
variances determined by the results of Levene's test. Meanwhile, regression analysis was 
performed to reveal the relationship between two sensors on different treatments. 
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In the third step (3), Tukey's Honestly Significant Difference (HSD) test for two-way analysis of 
variance (ANOVA) was employed to identify differences in NDVI values between treatments as 
measured by the sensors. All statistical analyses were conducted at a significance level of p ≤ 
0.05. 
In the fourth step (4), based on Pearson correlation analysis was determined the correlations (at 
significance levels of p ≤ 0.05, p ≤ 0.01, and p ≤ 0.001) between NDVI values produced from 
GreenSeeker (GS) and MicaSense (MS) data and winter wheat yield across different sowing 
dates. This analysis aimed to identify the most suitable date for yield predictions. 
Finally (5), the coefficient of determination (R²) was calculated to assess the relationship between 
NDVI values obtained from GreenSeeker measurements and MicaSense camera data and winter 
wheat yield. This analysis used linear, exponential, and quadratic equations at significance levels 
of p ≤ 0.05, p ≤ 0.01, and p ≤ 0.001. 

Results 

Comparative analysis of treatments based on NDVI 
Figure 2 shows the mean NDVI values calculated from GreenSeeker and MicaSense data. 
Measurements were conducted six times during the 2021-22 (Figure 2a,b) and 2022-23 (Figure 
2c,d) periods for all four treatments, with the average NDVI value (n=12) of each treatment. Based 
on the results of all four treatments, the NDVI values measured with the GreenSeeker were 
consistently lower than those obtained from the multispectral camera data at all measurement 
times for both years. Notably, a significant difference was observed between the Control and the 
other treatments (Environmental, Balance, and Genesis) in the NDVI values measured by the 
GreenSeeker in both years. This pattern was also proper for the NDVI values derived from the 
MicaSense camera data, except for May 12, where no significant differences were found between 
the Control and the Environmental, Balance, and Genesis treatments for 2021-22 and 2022-23.
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Figure 2. NDVI values were calculated from GreenSeeker and MicaSense camera data for the 2021-22 and 2022-23 periods. 
The average NDVI values for the four treatments (Control, Environmental, Balance, and Genesis) are depicted at six different 
measurement times. (a) GreenSeeker in 2021-22; (b) MicaSense in 2021-22; (c) GreenSeeker in 2022-23; (d) MicaSense in 
2023-23. Within each year and sensor, treatments that differ significantly at p ≤ 0.05 are indicated with a different letter. 

Comparison of different treatment of yields 
According to the yield of winter wheat depicted in Figure 3a, the yield obtained from the Control 
parcel showed a significant difference (p≤0.05) compared to the yields of other treatments 
(Environmental, Balance, and Genesis) during both growing seasons. However, comparing the 
Environmental, Balance, and Genesis treatments, no significant differences were observed either 
in the 2021-22 and 2022-23 seasons. A significant difference (p≤0.05) was observed between the 
yields of 2021-22 and 2022-23 in all treatments, as shown in Figure 3b. More favourable weather 
conditions were experienced in 2022-23, contributing to the higher yields of winter wheat. 

 

Figure 3. The mean yield of winter wheat per treatment in 2021-22 and 2022-23. (a) A year-by-year comparison of the yields 
for each treatment (Control, Environmental, Balance, Genesis), (b) the yields for the four treatments (Control, Environmental, 
Balance, Genesis) were compared between the 2021-22 and 2022-23 growing seasons. a–significant difference (p≤0.05), b–
no significant difference (p≥0.05) 

Relationships between NDVI measurements and winter wheat yields 
Table 1 demonstrated the Pearson correlation analysis outcomes between NDVI values derived 
from the GreenSeeker handheld sensor and MicaSense multispectral cameras and winter wheat 
yield. As seen for the GreenSeeker NDVI values, a significant correlation could be found between 
the NDVI values and the yield for all treatments except the Control treatment. In this case, the 
range of Pearson correlation coefficients was “weak positive” or “moderately positive” (212 DAS), 
except for 240 DAS. The correlation coefficients ranged from “strong positive” to “very strong 
positive” for the Environmental, Balance, and Genesis treatments. Regarding the MicaSense 
camera data, a declining correlation trend was observed between the NDVI values and yield from 
170 DAS to 200 DAS. However, the Genesis treatment reached a “very strong positive” 
correlation at 186 DAS. “Very weak negative” correlation values were found at 200 DAS for the 
MicaSense data. Each treatment's most vital "Pearson r" values occurred on various dates. 
However, the strongest correlations between NDVI values and yield showed at 170 DAS and 226 
DAS for both sensors. The NDVI values derived from the MicaSense camera data are 
insufficiently (“very weak negative”) predictive of winter wheat yield in the case of Environmental 
treatment. Based on Table 1, the GreenSeeker sensor allows for much more accurate and reliable 
yield prediction at different measurement times. 
Table 1. The range of Pearson Correlation coefficients - based on NDVI values calculated from data obtained using the 
MicaSense (MS) multispectral camera and GreenSeeker (GS) - is illustrated using different colours to indicate the strength 
of the correlation. The correlation coefficients were calculated at each sampling date (n = 8) at every sampling time. 
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Significance level: * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001.  

 

To evaluate the relationship between NDVI values and winter wheat yield, three different 
equations ((exponential (E), linear (L), and quadratic (Q)) were used from 170 DAS to 240 DAS, 
as shown in Table 2. The results of analyses included the coefficients of determination and 
ANOVA F-test. The regression analyses revealed no significant differences among the three 
equations for GreenSeeker and MicaSense cameras. The highest coefficient of determination 
(R²) between NDVI values and winter wheat yield was determined in the Control treatment at 240 
DAS for both sensors. On the contrary, based on Table 2, the highest R² values showed the 
Environmental, Balance, and Genesis treatments at 170 DAS and 226 DAS. The NDVI values 
calculated from multispectral camera data reached the lowest R² values between 200 DAS and 
212 DAS. The most accurate predictions were obtained in treated plots using the GreenSeeker 
at 226 DAS (R² = 0.76–0.91). Similarly, the MicaSense camera provided accurate predictions in 
treated plots at 226 DAS (R² = 0.69–0.86). However, the MicaSense camera's R² values were 
more variable, with the highest values found at 186 DAS (R² = 0.88) and 240 DAS (R² = 0.89–
0.90). 
Comparative analysis of data from the two sensors indicates that GreenSeeker measurements 
demonstrated higher reliability and relevance for yield prediction for all treatments, from stem 
extension to ripening. As presented in Table 2, the minimal differences between the various 
equations suggest that all three models are equally effective for predicting wheat yield at 226 DAS 
for both sensors. 
 
Table 2. The coefficient of determination (R²) between NDVI values derived from GreenSeeker measurements and 
calculations of MicaSense camera data and winter wheat yield for the Control, Environmental, Balance, and Genesis 
treatments was assessed using three distinct models (exponential (E), linear (L), quadratic(Q)). 

 

Treatments 170 186 200 212 226 240

Control (GS) **

Control (MS) *** 0.80 to 1.00 Very strong positive

Environmental (GS) ** * ** ** ** 0.60 to 0.79 Strong positive

Environmental (MS) ** ** 0.40 to 0.59 Moderate positive

Balance (GS) * ** ** *** * 0.20 to 0.39 Weak positive

Balance (MS) ** ** ** 0.00 to 0.19 Very weak positive

Genezis (GS) ** * ** ** ** * -0.19 to -0.01 Very weak negative

Genezis (MS) ** *** *

Days After Sowing (DAS)
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1 Represented the exponential equation, and formula yyield = a × eb × xNDVI was used; 2 represented the linear equation, and formula yyield 
= a × xNDVI + b was used; 3 represented the quadratic equation, and formula yyield = a × xNDVI

2 + b × xNDVI + c was used, a and b are 
regression parameters in each equation. * Significance level at the p ≤ 0.05 level, ** significance level at the p ≤ 0.01 level, *** significance 
level at the p ≤ 0.001 level. 

Discussion 
This study examined the NDVI values derived from two sensors: the GreenSeeker handheld crop 
sensor and the MicaSense multispectral camera. These values were compared to different 
phenological stages of winter wheat in the 2021-22 and 2022-23 growing seasons. The study's 
findings demonstrated through two-year small-scale field trials revealed that NDVI readings could 
be effectively used to predict the in-season yield of winter wheat. 
Based on our result (Figure 2), measurements by GreenSeeker had much lower NDVI values 
than the MicaSense camera data, regardless of the year or time of the measurements. These 
findings were confirmed also in other experiments on wheat in Australia (Duan et al., 2017) or in 
paddy rice in China (Jiang et al., 2020; Nakano et al., 2023).  
The NDVI values calculated from the GreenSeeker and MicaSense camera data showed a 
significant difference (Figure 2) between the Control and other treatments (Environmental, 
Balance, Genezis) at different measurement times. However, no significant differences were 
observed between the Environmental, Balance, and Genesis treatments over the period 
considered because all treatments received the same amount of nitrogen except for the Control 
treatment. Numerous studies have shown that nitrogen could affect the NDVI values of wheat (Li 
et al., 2009; Bijay-Singh et al., 2011; Kizilgeci et al., 2021). 
Table 1 summarizes Pearson's correlation coefficients as a measure of the strength of the 
association between NDVI values measured by GreenSeeker (GS) and calculated from the 
MicaSense (MS) camera data. Based on our result, 170 DAS (Feekes 5) and 226 DAS (Feekes 
10.5) were the highest relationship between GS NDVI and MS NDVI and winter wheat yield. 
Higher values were observed for the GS NDVI in both measurements compared to the two 
sensors. Based on Walsh et al. (2023) study, UAV NDVI values showed a higher correlation 
coefficient with yield in spring wheat at Feekes 5 and 10, with r=0.66 and r=0.52 than GS NDVI 

DAS 170 186 200 212 226 240

E1 0.09 0.06 0.12 0.25 0.13 0.70**

L2 0.09 0.05 0.11 0.23 0.11 0.70**

Q3 0.09 0.09 0.16 0.47 0.61 0.86**

E1 0.72** 0.52* 0.78** 0.81** 0.76** 0.44

L2 0.73** 0.53* 0.89** 0.80** 0.77** 0.43

Q3 0.74* 0.78* 0.82* 0.81* 0.82* 0.45

E1 0.81* 0.42 0.68* 0.74** 0.90*** 0.68*

L2 0.70** 0.44 0.70** 0.77** 0.91*** 0.66**

Q3 0.68* 0.75* 0.73* 0.77* 0.91** 0.84**

E1 0.74** 0.67* 0.77** 0.78** 0.78** 0.53*

L2 0.75** 0.80* 0.78** 0.79** 0.79** 0.53*

Q3 0.76* 0.68 0.85** 0.80* 0.79* 0.57

E1 0.13 0.32 0.00 0.07 0.50 0.90***

L2 0.12 0.09 0.00 0.06 0.48 0.89***

Q3 0.23 0.12 0.12 0.25 0.70 0.89**

E1 0.74** 0.19 0.08 0.04 0.79** 0.37

L2 0.75** 0.20 0.01 0.04 0.79** 0.35

Q3 0.82* 0.21 0.01 0.30 0.86** 0.38

E1 0.71** 0.28 0.07 0.28 0.79** 0.71**

L2 0.72** 0.29 0.08 0.28 0.78** 0.87*

Q3 0.80* 0.88** 0.20 0.28 0.79** 0.69

E1 0.78* 0.88*** 0.15 0.37 0.69* 0.47

L2 0.79** 0.88*** 0.15 0.37 0,69* 0.47

Q3 0.86** 0.88*** 0.15 0.37 0.69* 0.48

MicaSense

Control

Environmental

Balance

Genezis

GreenSeeker

Control

Environmental

Balance

Genezis
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r=0.56 and r=0.34, respectively. Hassan et al. (2019) and Duan et al. (2017) found high correlation 
coefficients between GreenSeeker and UAV NDVI. Goodwin et al. (2018) and Kiran et al. (2015) 
reported a good correlation between flowering and the mid-grain filling period based on NDVI. In 
addition to wheat, the correlation between NDVI values obtained from GreenSeeker or 
multispectral camera data has also been examined for crops such as cabbage (Ji et al., 2017) or 
rice (Perros et al., 2021; Nakano et al., 2023). 
To determine the relationship between the yield of winter wheat and NDVI values more effectively 
in-season, linear and non-linear regression analyses were used with three (exponential, linear 
and quadratic) equations. Based on Table 2, our study showed that the linear model could explain 
the relationship between the in-season yield of winter wheat and NDVI values. Similar findings 
were reported in wheat by Benedetti et al. (1993). Several studies confirmed that a linear model 
could be more suitable for predicting the yield of crops (Groten, 1993; Mkhabela et al., 2000; 
Mkhabela et al., 2005; Almeida-Ñauñay, 2023). According to Holzapfel et al. (2009), exponential 
and linear were suitable for predicting the excepted yield of canola in Canada, while Hayes et al. 
(1996) reported that the quadratic model could explain the relationship between the yield of maize 
and NDVI values.  Similar in-season yield prediction examinations were also performed on 
cabbage by Ji et al. (2017), on rice by Son et al. (2014), and on millet by Rasmusen (1992). 
Our results demonstrate the GreenSeeker handheld optical sensor's superiority in providing 
readily available, reliable, and relevant NDVI values at all measurement times. This reliability 
extends to the Pearson correlation result and the in-season yield prediction of winter wheat. In 
contrast, the MicaSense camera, as Bang et al. (2017) reveal, requires time-consuming 
calibration and image processing service to generate an orthomosaic NDVI map, necessitating 
additional data extraction expertise. 

Conclusions  

This research aimed to examine one of the most popular and frequently used vegetation indexes: 
NDVI. During the comparison of the GreenSeeker and MicaSense sensors based on NDVI 
values, it was demonstrated that more reliable results can be achieved with the GreenSeeker 
handheld crop sensor when examining winter wheat in the growing season. The differences in 
NDVI values could be due to the variations in the wavelengths used by the MicaSense and 
GreenSeeker sensors. In our two-year small-scale field trial, the Pearson correlation and 
regression analyses showed that the NDVI values calculated from MicaSense RedEdge-MX Dual 
Camera System data and GreenSeeker optical sensor at 226 DAS were significantly associated 
with the winter wheat yield. However, it is worth considering several more years of data to 
determine the appropriate in-season yield forecast model. 
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