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Abstract 
Swarm intelligence, inspired by the collective behavior of social insects, plays a pivotal role in 
evolutionary computing and multi-agent systems. In agricultural contexts, swarm intelligence-
inspired robotics can significantly enhance early detection of lower foliar diseases, which is 
essential for sustaining food production and economic viability over the long term. Soybean crops 
are susceptible to diseases like Sclerotinia stem rot, causing substantial economic losses to 
farmers. Traditional methods, including satellite and drone technologies, are insufficient for 
managing rapid disease spread due to cloud cover and limited field scalability. This study 
addresses these challenges by introducing the Voronoi-Ant Colony Optimization (V-ACO) 
framework, a hybrid algorithm combining Voronoi tessellation and Ant Colony Optimization (ACO) 
to enhance swarm robots’ navigation and target identification. The V-ACO framework leverages 
the decentralized decision-making capabilities of swarm robotics, augmented by the path 
optimization features of ACO and spatial segmentation using Voronoi diagrams. This integration 
allows for efficient navigation and task performance in complex agricultural environments. 

The framework was implemented and tested using the Unity engine, providing a scalable and 
realistic 3D simulation environment ideal for large-scale agricultural applications. The 
performance analysis of the V-ACO framework demonstrates its strengths and potential in target 
plant identification by following collision avoidance between dense plant spacing crops such as 
soybean in Unity 3D simulation. The results highlight the effective spatial distribution of detections 
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within Voronoi zones and emphasize the importance of advanced path planning using swarm 
robotics. Future work will focus on integrating deep computer vision models using Unity's ML-
Agents to enhance the framework's capabilities further. Additionally, field trials using a swarm of 
robots will validate the framework's efficacy in real crop situations, providing valuable insights and 
guiding further optimizations to ensure its practical applicability and effectiveness in precision 
agriculture. The potential of this project lies in performing research using 3D robotics simulators 
to identify efficient path planning algorithms for swarm robotics navigation in crops with dense 
plant spacing. 

Keywords 
Swarm Robotics, Precision Agriculture, Voronoi diagrams, Ant Colony Optimization, Path 
Planning, Soybean, Unity 

1 Introduction 
Swarm intelligence is a pivotal concept in evolutionary computing. The essential idea of swarm 
intelligence algorithms is to employ many simple agents applying almost no rule which in turn 
leads to an emergent global behavior. The general principles of swarm intelligence include the 
proximity principle, ensuring direct behavioral responses among agents. The quality principle, 
where agents respond to quality factors in their environment. The principle of diverse response, 
equipping agents to handle scattered resources and environmental fluctuations. Lastly, the 
principle of stability and adaptability, enabling agents to adapt to environmental fluctuations with 
minimal energy costs for mode changes (Hu, 2012; Hamann, 2018; Dias et al., 2021). 
In terms of specific algorithms, the Ant Colony Optimization (ACO) algorithm mimics the foraging 
behavior of ants, particularly their use of chemical trails to find the shortest path. This algorithm 
finds applications in vehicle routing problems, image processing, assignment problems, and 
scheduling problems. Similarly, Bee Colony Optimization (BCO) algorithm is computed based on 
the foraging behavior of honeybees, specifically the waggle dance used to communicate distance, 
direction, and quality of food sources. Applications of these algorithms include shop scheduling, 
neural network training, and image processing. Another noteworthy algorithm is Particle Swarm 
Optimization (PSO), where agents move together to achieve a common goal, mimicking physical 
quantities such as velocity and position. The challenge in PSO lies in finding the optimal path with 
fewer parameters, with applications in finding global optimal solutions (Hu, 2012). Swarm robotics 
applies these principles to multi-agent systems, emphasizing decentralized control, complex 
communication protocols, and emergent behavior. Key attributes of swarm robotics include 
robustness, flexibility, and scalability. Robustness ensures that the system can perform target 
tasks with independent agents. Flexibility allows agents to serve multiple purposes and tasks, 
functioning under restricted communication. Scalability ensures that the system remains 
functional with varying numbers of elements, ensuring task completion (Hamann, 2018; Dias et 
al., 2021, Zhou et al., 2022). 

1.1 Why Swarm Intelligence in Agriculture? 
In agricultural contexts, swarm intelligence holds significant potential. For instance, the soybean 
crop is susceptible to various diseases which burdens farmers economic situation. The soybean 
Sclerotinia stem rot is caused by Sclerotinia sclerotiorum. This is one of the major fungal diseases 
in the north-central region of the United States. Between 2018 and 2022, Sclerotinia stem rot 
alone caused a loss of 92,804,866 bushels, translating to an economic loss of $990,455,168 in 
Northern U.S. States (Crop Protection Network, 2023). This disease affects the lower portion of 
plant stems and leaves and slowly spreading toward the upper portion. One approach for 
managing Sclerotinia stem rot is by spraying fungicides. However, spot spraying with drone at 
first mission might not be effective in detecting infected plants early enough for effective 
intervention. If ground robots can identify these infected plants and take early preventive 
measures such as fungicide application, it can significantly enhance disease management. 
Vinclozolin, for instance, has been shown to be highly effective in inhibiting S. sclerotiorum 
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mycelial growth at early stages (Mueller et al., 2002). Designing crop-specific robots that navigate 
between the rows can detect the early infected plants under the canopy. Subsequently, sending 
drones to these areas would be efficient for targeted fungicide spraying. This highlights the 
potential of ground swarm robotics in Precision Agriculture by enabling targeted fungicide 
applications. 
To achieve collective intelligence in swarm robots, several components are integrated. The 
primary Central Processing Unit (CPU) coordinates swarm behavior, executes high-level 
algorithms, and makes decisions based on collective information. Auxiliary Micro Controller Unit 
(MCU) modules manage time-sensitive operations, ensuring timely responses and coordination 
within the swarm. Sensors and transducers perceive surroundings and gather information, crucial 
for collective intelligence relying on inter-robot communication. Actuators and transducers, 
including DC motors, gripper motors, LED lights, and speakers, interact with the environment and 
neighboring robots (Albiero et al., 2022; Dias et al., 2021). However, implementing swarm robotics 
in agriculture faces several challenges. These include ensuring hardware upgrades, maintaining 
robust communication networks, navigating complex field geometries, and developing control 
architectures to facilitate emergent group behaviors (Albiero et al., 2022). Simulation studies play 
a critical role in addressing these challenges by providing a controlled environment to test and 
refine algorithms, hardware configurations, and communication protocols before deployment in 
real-world settings. 

1.2 Swarm Robotics Simulators for crop row navigation 
Simulations allow researchers to model complex agricultural environments, optimize robot 
interactions, and predict system behaviors under various scenarios, reducing the risks and costs 
associated with field trials. Based on a comparison of Unity, Gazebo, and V-rep, Unity emerges 
as the most suitable simulator for large-scale agricultural applications (Wang et al., 2024). Unity 
offers high scalability, supporting simulations of very large environments making it ideal for 
realistic 3D simulations. Gazebo, while open-source and providing high-reliability simulations with 
excellent Robot Operating System (ROS) integration, is limited in scalability and might not be 
typically used for fields over a quarter section (160 acres). V-rep, known for its advanced 
simulation features and good ROS integration, also falls short in handling large fields. Therefore, 
for agricultural research requiring extensive field simulations, Unity is the preferred choice due to 
its scalability and robust 3D simulation capabilities (Table 1). The choice of simulation platforms 
like Unity further enhances the potential for realistic and scalable agricultural research, paving the 
way for innovative applications and improved farm management (Lim et al., 2021; De Melo et al., 
2019; Karunarathna et al., 2023). 

Table 1. Swarm robotics simulators for crop row navigation 
Simulator 3D/2D ROS 

integration 
Suitable for simulating Quarter section 

Field 
Unity 3D Yes Yes 

Gazebo 3D Yes No 

V-rep 3D Yes No 

1.3 V-ACO: The hybrid algorithm approach  
Swarm intelligence algorithms for soybean crop row navigation can be significantly enhanced 
using the Voronoi-Ant Colony Optimization (V-ACO) framework. This hybrid approach integrates 
swarm robotics (SR), Voronoi tessellation, and Ant Colony Optimization (ACO) to navigate and 
perform tasks efficiently in a simulated soybean farm environment (Dorigo & Stutzle, 2004; Okabe 
et al., 2000). The V-ACO framework leverages the decentralized decision-making capabilities of 
SR, enhanced by the path optimization features of ACO, guided by spatial segmentation using 
Voronoi diagrams (Du et al., 1999; Dorigo et al., 2006; Xiong et al., 2019). In our framework, 
Voronoi diagrams are used to partition the soybean field into regions based on the positions of 
robots or targets. This spatial segmentation allows for efficient allocation of tasks and navigation 
paths. ACO, inspired by the foraging behavior of ants, is employed to find the shortest path or 
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optimal sequence of actions within these regions. The V-ACO framework has been implemented 
and tested using the Unity engine, which provides a scalable and realistic 3D simulation 
environment ideal for large-scale agricultural applications. 

2 Methods	

2.1 Layout and design of the Simulated Soybean Field and Robot model 
The simulation environment for the V-ACO framework was developed in Unity software version 
2022.3.29f1. The development and testing of the simulation were conducted on a desktop 
computer equipped with AMD Ryzen 7 5800X processor, 32 GB of DDR4 RAM, and an NVIDIA 
GeForce RTX 3090 Graphics Processing Unit (GPU) with 24 GB of VRAM. This setup provided 
the necessary computational power to handle 3D simulation scenes and process iterative tasks 
efficiently for a 40 m × 40 m field.  
The field was designed to reflect realistic crop recommendations on soybean planting (South 
Dakota State University Extension, 2020). Each row of soybean plants was spaced 0.762 meters 
apart (30 inches), while individual plants within a row were spaced at intervals of 0.1016 meters 
(4 inches). A 1-meter margin was maintained around the field's perimeter to avoid boundary 
effects. In total, 18,750 plants were instantiated in the field. Of these, 14,765 (80%) were healthy 
plants, and 3,985 (20%) were diseased plants. The distribution of soybean plants within the field 
was randomized to simulate natural planting variations (Table 2). Healthy plants used a specific 
prefab, while non-healthy plants used a different prefab, ensuring visual distinction in the 
simulation (Appendix 1, Fig. S1). The visualization in Figs. 1B & 1C depicts the uniform row 
spacing and top view of 40 m × 40 m simulated field across the simulation. 

Table 2. Simulation and Real-World Measurements for Soybean Field Design 

 
 
 
 
 
 
 
 
 
 
 
 
 
Four robot models were introduced into the simulation (Fig. 1A), each representing a real-world 
counterpart with dimensions suitable for navigating soybean fields. Specifically, each robot model 
had a width of 18 inches, aligning with the 0.762 meters (30 inches) row spacing between soybean 
plants. The robot prefab was instantiated based on real-world sizes and settings, as detailed in 
Appendix 2, Fig. S2. The Unity NavMesh, depicted in Fig. 1D, was generated using Unity's AI 
engine and was adjusted to accommodate the size of the rows and the robots (Unity 
Technologies, 2022). The NavMesh agent settings included a 0.4572 meters (18 inches) agent 
radius, ensuring precise navigation and interaction within the field environment. This setup 
allowed the robots to move seamlessly between the rows, effectively simulating real-world 

Aspect Unity 
Measurement 

Real World 
Measurement 

(meters) 

Real World 
Measurement 
(feet/inches) 

Field 
Width 

40 units 40 meters 131.234 feet 

Field 
Length 

40 units 40 meters 131.234 feet 

Field 
Area 

- 1600 meters2 0.395 acre 

Row 
Spacing 

0.762 units 0.762 meters 30 inches 

Plant 
Spacing 

0.1016 units 0.1016 meters 4 inches 

Margin 1 unit 1 meter 3.281 feet 

Total 
Number 

of 
Plants 

18,750 - - 

Healthy 
Plants 

14,765 (80%) - - 

Non-
Healthy 
Plants 

3,985 (20%) - - 



Proceedings of the 16th International Conference on Precision Agriculture 
21-24 July, 2024, Manhattan, Kansas, United States  

5 

conditions and validating the robot’s ability to navigate and perform tasks in a controlled, virtual 
soybean farm. The detailed specifications and configurations of the robot prefab and NavMesh 
are crucial for ensuring the accuracy and reliability of the simulation results, which is described in 
Appendix 2, Table S1. 

 
Fig 1. Simulation visualization setup for testing V-ACO algorithm. (A) The digital robot model. (B) The row spacing 

visualized in the simulation. (C) Top view of the farm after initializing 40 m x 40 m planting. (D) NavMesh generated using 
Unity AI engine, adjusted to row size and robot size. 

2.2 V-ACO Framework for target plant identification 
In the context of soybean diseased prefab plant identification, the ACO algorithm optimizes the 
paths of robots as they navigate through the Voronoi cells. The pheromone update rule in ACO 
influences the probability of path selection by subsequent robots, ensuring that optimal paths are 
reinforced over time (Dorigo & Stutzle, 2004; Okabe et al., 2000). This process involves 
pheromone evaporation to avoid premature convergence and the deposition of new pheromones 
to mark efficient paths (Şahin, 2005; Yang, 2014). The probability of selecting a particular path is 
influenced by the amount of pheromone present and the visibility, or attractiveness, of the path. 
This comprehensive integration of Voronoi tessellation and ACO within the V-ACO framework 
allows for effective navigation and task performance in complex agricultural environments. This 
framework was tested in simulation environments to evaluate the extent of V-ACO's effectiveness. 
The implementation details and algorithms described in this section are based on the custom C# 
scripts developed for this study, utilizing Unity's game engine for simulation and SciPy for 
computational geometry tasks (Unity Technologies, n.d.; Virtanen et al., 2020). 
2.2.1 Voronoi Zone Management 

The Voronoi Zone Manager class is defined in the C# script, which divides the simulation into 
zones based on the location of each robot, ensuring coverage and optimizing navigation paths. 
 

A B

D
C
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Algorithm 1 Voronoi Zone Initialization 
1: Input: Set of robot positions R, Field dimensions F 
2: Output: Voronoi zones V 
3: Initialize Voronoi zones V assigned based on placement of robot positions R 
4: for each point p in the field F do 
5:     Assign p to the nearest robot zone in V 
6: end for 

 
2.2.2 Robot Navigation Control 

The Robot Controller class is defined in the C# script, which manages the movements of each 
robot within its assigned Voronoi zone, utilizing local information and pheromone trails to make 
decisions. 
 

Algorithm 2 Robot Navigation 
1: Input: Current position P, Target positions T, Pheromone map M 
2: Output: Next position Pnext 
3: if target detected within the zone, then 
4:    Move directly towards target 
5: else 
6:     Use pheromone levels to choose next position 
7:     Update position based on shortest path to next high pheromone concentration 
8: end if 

 
2.2.3 Pheromone Mapping 

The Pheromone Map class is defined in the C# script to simulate the laying and evaporation of 
pheromones within the environment, guiding the robots’ movement decisions. 
 

Algorithm 3 Pheromone Update 
1: Input: Robot positions R, Detected targets D 
2: Output: Updated pheromone concentrations M 
3: for each robot r in R do 
4:    Lay pheromones along path r 
5: end for 
6: Evaporate pheromones over time 

 
2.2.4 Diseased Plant Detection 

Robots are equipped with RGB cameras to detect tagged diseased plants. When a diseased plant 
is detected, its position is logged, and a high concentration of pheromones is laid to attract other 
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robots for further investigation. 
 

Algorithm 4 Diseased Plant Detection 
1: Input: Current position P, Sensor readings S 

2: Output: Detection log L, Updated pheromone map M 
3: if sensor detects diseased plant then 
4:    Log position P in detection log L 
5:    Lay high concentration of pheromones at P 
6: end if 

3 Results and Discussion 

3.1 Pictographic overview of Developed Swarm Robotics Simulator for soybean crop row 
navigation 
The Voronoi Zone Manager class divides the field into zones based on the robot's location. As 
illustrated in Fig. 2A, the field is partitioned into four distinct zones using the Voronoi tessellation 
(Du et al., 1999). This method enhances the overall efficiency and effectiveness of the swarm 
robotics system. In Fig. 2B, the NavMesh generated by the Unity AI engine is highlighted from 
the robot's camera perspective. Fig. 2C provides a top overview of the robots distributed across 
their assigned zones in a 40 m × 40 m simulated field. Typically, soybean farm sizes are very 
large in South Dakota, and simulating such quarter-section fields would require advanced GPUs 
with significantly higher than 24GB VRAM. However, a User Interface (UI) has been developed 
for such applications and is highlighted in Appendix 3. This UI facilitates interaction with the 
simulator, allowing for real-time adjustments and monitoring of the simulation parameters. When 
entering gameplay mode, the UI provides buttons for planting and controlling the robots, 
significantly reducing the VGPU memory load for a quarter-section field by optimizing hardware 
resource allocation. 

 
Fig. 2 Simulation visualization after initiating V-ACO. (A) Four zones in the Voronoi diagram. (B) NavMesh seen from the 
robot's camera. (C) High-level overview of robots distributed in their zones. Robot 1 (Blue), Robot 2 (Orange), Robot 3 

(Green), and Robot 4 (Red). 

A B

C
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3.2 Performance analysis of the V-ACO navigation framework for soybean row crop 
The performance analysis of the V-ACO framework, as depicted in Fig. 3A, illustrates the spatial 
distribution of detected diseased plants by each robot, with the field partitioned into four distinct 
Voronoi zones. Each color represents a different robot, indicating their assigned zones and the 
detections made within those zones. This spatial distribution plot confirms that the Voronoi-based 
partitioning ensures comprehensive coverage of the field, with minimal overlap, thereby 
optimizing the efficiency of the swarm. Fig. 3B shows the coverage area achieved by each robot. 
The uniformity in coverage areas across the robots indicates that the V-ACO framework 
effectively ensures that each robot monitors its designated zone thoroughly. This is crucial for 
maintaining comprehensive field surveillance and minimizing gaps in coverage.  

 
Fig.3 Comprehensive performance metrics of the V-ACO framework for Soybean crop row navigation. (A) Spatial 

distribution of detected diseased plants by robots in the soybean field within Voronoi zones. (B) Coverage area achieved 
by each robot. (C) Average time between detections for each robot. (D) Time to first detection for each robot. (E) Temporal 

detection trends over time for each robot. (F) Total detections made by each robot. 

Fig. 3C presents the average time between detections for each robot. Robots 2 (Orange) and 3 
(Green) show shorter average times between detections, indicating higher efficiency in identifying 
diseased plants compared to Robots 1 (Blue) and 4 (Red). This variation highlights potential areas 
for optimizing detection algorithms to ensure uniform performance across all robots. Fig. 3D 
displays the time taken for each robot to make the first detection of a diseased plant, based on a 
randomly distributed target plant in a simulated soybean field (20%). Robot 1 (Blue) shows a time 

A

E

B

C

D

F
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of 0 seconds for its first detection, indicating immediate detection upon starting. Robot 2 (Orange) 
is the second quickest among the robots, followed by Robot 3 (Green) and Robot 4 (Red), which 
took longer to detect their first diseased plant.  
Fig. 3E tracks the temporal detection trends over time for each robot. This trend analysis is vital 
for understanding the temporal disease spread across the field and the robots' detection patterns. 
The graph shows fluctuations in detection counts over time, with peaks indicating periods of high 
detection activity. If one robot shows a high number of detections while others are low, it could 
imply that the robot is operating in a zone with a higher concentration of diseased plants, or that 
the detection algorithm for that robot is more efficient. This suggests the need for balancing 
detection algorithms and ensuring uniform coverage across the field to optimize overall detection 
efficiency. It's important to note that in this simulation, each robot is not limited to detecting specific 
types of diseases but rather detects any diseased plant within its operational zone. Fig. 3F 
summarizes the total detections made by each robot. All robots have made a substantial number 
of detections, with Robot 3 (Green) slightly ahead of the others. This indicates effective 
deployment, ensuring that all robots contribute significantly to the detection process. The slightly 
higher detection count for Robot 3 might suggest either a more efficient algorithm, a denser 
concentration of diseased plants in its assigned area, or optimal navigation and coverage 
strategies. These insights can guide further optimization of deployment strategies and algorithm 
tuning to enhance overall detection performance. 

4 Conclusion  
The performance analysis of the V-ACO framework demonstrates its potential in swarm robotics 
navigation and target identification in Unity 3D simulation. V-ACO improves the effective spatial 
distribution of detections within Voronoi zones and highlights the temporal detection trends, 
essential for understanding disease spread patterns, confirming comprehensive field coverage 
with minimal overlap (Figs. 3A and 3E). Comparing V-ACO with other path planning algorithms 
like Voronoi-only, ACO-only, and PSO will reveal the areas for improvement for this hybrid 
approach. V-ACO's integration of Voronoi tessellation and ACO provides a balanced approach, 
but optimizing detection algorithms and ensuring uniform performance across all robots remains 
crucial. Integrating Computer Vision (CV) and Deep Learning (DL) models using Unity's ML-
Agents enhances the V-ACO framework's capabilities. This integration enables edge deployment 
and real-time processing, improving disease detection accuracy and efficiency. Advanced CV and 
DL techniques, such as Generative Adversarial Imitation Learning (GAIL), can further refine the 
swarm's behavior and detection performance (Ho & Ermon, 2016).  
Current satellite and drone technologies are insufficient for managing rapid disease spread due 
to cloud cover, highlighting the importance of advanced path planning and immediate intervention 
capabilities. Parallel simulations of multiple scenarios will be conducted to test various 
environmental conditions and population dynamics. Field trials using a swarm of robots will 
validate the framework's efficacy in real crop situations. These trials will provide valuable insights, 
guiding further optimizations of the V-ACO framework and ensuring its practical applicability and 
effectiveness in precision agriculture. In conclusion, the V-ACO framework shows an efficient 
swarm robotic navigation approach for soybean fields, addressing the complexities of real-world 
environments and enhancing crop protection strategies. 
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Appendices 

Appendix 1 Soybean simulation plant prefab models from Xforge agriculture library 
In our project, we utilized a 3D model of soybean plants to simulate the field environment (XFrog, 
n.d.). This model can be found on TurboSquid’s website. The soybean section from the agriculture 
library in XFrog contains nine variations depicting various growth stages. For the 3D simulation, 
variations 7 and 9, which are 94 cm and 100 cm, respectively were chosen (Fig. S1). The variation 
9 resembles a dried plant or overly mature plant, which is used to identify diseases for simulation 
purposes. 

 
Fig. S1 Soybean simulation plant prefab models from the Xforge agriculture library. (A) Healthy plant. (B) Diseased plant 

(XFrog, n.d.). 
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Appendix 2 Lynxmotion AWD4 Rugged abstract model and Nav Mesh Agent parameters 
used in simulation study 
The A4WD3 rover, selected for this simulation research, is particularly suited for agricultural 
research applications due to its ability to navigate up to 25-inch crop spacing in crops. Measuring 
451.5 mm (17.776 inches) in width, the rover navigates effectively between rows, minimizing 
potential damage to plants (Fig. S2). Its robust construction, featuring a durable machined 
aluminum frame and G10 composite plates, ensures resilience against environmental elements 
like water and dust. Additionally, the propulsion system, consisting of four 12 V DC motors with 
27:1 metal planetary gears and rear encoders, along with four sets of sprockets and reinforced 
continuous rubber tracks, provides precise navigation and exceptional traction across various 
agricultural terrains, including uneven fields (Lynxmotion, n.d.). 

 
Fig. S2. The robot model used in the simulation is based on the Lynxmotion A4WD3 rugged rover platform. 

 
Table S1. Nav Mesh Agent Parameters Used in Simulation Study 

Parameter Value in 
Unity 

Real World Measurement 
(meters) 

Real World Measurement 
(feet/inches) 

Agent Type Humanoid - - 
Base Offset 136 136 meters 446.194 feet 

Speed 1 1 meter/second 3.281 feet/second 
Angular Speed 90 90 degrees/second 90 degrees/second 
Acceleration 5 5 meters/second² 16.405 feet/second² 

Stopping Distance 0.1 0.1 meters 3.937 inches 
Auto Braking Enabled - - 

Obstacle Avoidance Radius 20 20 meters 65.617 feet 
Height 0.5 0.5 meters 19.685 inches 
Quality High Quality - - 
Priority 50 - - 

Auto Traverse Off Mesh 
Link 

Enabled - - 

Auto Repath Enabled - - 
Area Mask Everything - - 

Agent Radius 0.4572 0.4572 meters 18 inches 
Agent Height 0.1 0.1 meters 3.937 inches 

Max Slope 44.8 degrees 44.8 degrees 44.8 degrees 
Step Height 0.02 0.02 meters 0.787 inches 
Drop Height 0 0 meters 0 feet/inches 

Jump Distance 0 0 meters 0 feet/inches 

 
 
 
 
 
 

Robot Width 45.72 cm
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Appendix 3 Unity UI for planting quarter section soybean field 
Algorithm S.1 instantiates soybean plants in a quarter-section field within Unity. It uses two 
prefabs, one for diseased plants and one for healthy plants, and places them in rows and columns 
with specified spacing and margins. The selection of plant type is randomized with a 20% 
probability for diseased plants. Once the user clicks play and enters Game mode, using these 
snippets mentioned in Fig. S3 in the Unity interface helps efficiently load and manage a large 
scene such as a quarter-section field. 

 
Fig. S3. Unity User Interface (UI) for planting and robot movement in a quarter-section soybean field simulation. (A) The 
panel shows the UI buttons for planting and robot movement. (B) The right panel displays the planted quarter section 

soybean field. 

Algorithm S.1 Plant Soybeans in a Quarter-Section Field 
1: Input: 
2: prefab20: Prefab for diseased soybean plant 
3: prefab80: Prefab for healthy soybean plant 
4: quarterSectionFieldWidth ← 1012.462 meters 
5: quarterSectionFieldLength ← 640.0 meters 
6: rowSpacing ← 0.762 meters 
7: plantSpacing ← 0.1016 meters 
8: margin ← 0.6096 meters 
9: Output: 
10: A field of soybean plants instantiated in Unity 
11: Create a new GameObject named SoybeanQuarterSectionField 
12: for each position x from margin to quarterSectionFieldWidth – margin  
      incrementing by rowSpacing do                 
13:        for each position z from margin to quarterSectionFieldLength – margin 
      incrementing by plantSpacing do 
14:              Randomly select a prefab (prefab20 or prefab80 ) with a 20% probability for prefab20 
15:           Create a new plant instance at position (x, 0, z) 
16:           Set the new plant instance’s parent to SoybeanQuarterSectionField 
17:       end for 
18: end for 

 


