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Abstract.  
The mapping of soil attributes for fertilizer recommendation remains challenging in precision 
agriculture. Traditionally, this mapping is done through soil sampling in a regular grid, which 
generally yields good results when done in denser grids. However, due to the high costs 
associated with sampling and analysis, sparser grids have been adopted, which has not produced 
good prediction results. Some studies with directed sampling points to obtain more accurate soil 
maps have been adopted to address the limited sample problem. An interesting methodology 
involves dividing regions in a field into macro and micro zones of environmental covariate 
homogeneity and subsequently directing soil sampling points based on the variability of these 
zones. This technique complements zoning with interpolation and is a promising alternative 
because it allocates more points where higher attribute variability is expected. In this study, using 
the fuzzy c-means clustering technique, we divided the agricultural field into macro and micro 
zones of magnetic susceptibility and historical vegetation index. We then tested two sampling grid 
densities (one sample/ha and 0.4 samples/ha) and two percentages of sample point targeting 
(25% and 50%) within these grids, and their effect on mapping available P and K, as well as clay 
content, in a commercial sugarcane area. We found that directing 50% of soil sampling points in 
a sparse grid, based on inferred area variability, allowed for more accurate soil maps than those 
obtained with regular grid sampling. The same pattern of results was not found for directing one 
sample per hectare, as the regular density with this number of points allows for precise mapping 
of the tested attributes. Thus, for mapping using sparse grids, directing 50% of soil sampling 
points based on zones of macro and micro homogeneity of environmental covariates seems 
attractive for optimizing the mapping of multiple soil attributes compared to regular grid sampling. 
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Introduction 
Agricultural areas are not uniform, and even in small portions, it is well established that there is 
soil variability. Therefore, decision-making and the application of amendments and fertilizers 
should follow the principle of variability, namely variable rate application, to increase productivity 
potential without depleting natural resources. Mapping soil properties for fertilizer 
recommendations at varied rates is commonly done using regular grid sampling (Brus 2019). 
Regular grids emphasize uniform spatial coverage, ensuring a good representation of the entire 
field with regularly spaced intervals predetermined by samplers. In sampling planning, the number 
of sample points usually varies according to the financial and/or operational constraints set by 
those conducting the work. In Brazil, it is known that the size of the sample grid varies widely 
depending on the region and producer profile (Molin 2017). However, this typical management 
contradicts ideal grid size recommendations, which should be based on the variability of the 
attributes of interest rather than financial constraints (Cherubin et al. 2014; Nani et al. 2011). This 
can compromise decision-making regarding fertilizer application rates throughout the crops 
(AmaraL and Justina 2019). 
Currently, studies are focusing on optimizing sampling grids to achieve more accurate digital soil 
maps (Baio et al., 2023). Some approaches are based on directing sampling points using auxiliary 
terrain information that exhibits spatial relationships with the soil variables to be mapped (Pusch 
et al., 2023; Wang et al., 2023). The complementarity of two or more mapping techniques has 
proven to be a promising alternative for directing sample points and thus improving map quality. 
Wang et al. (2023), employing zoning techniques with environmental covariates from DEM-
derived terrain data, inferred soil macrovariability, termed as macrozones, identifying areas with 
more significant heterogeneity. Subsequently, they subdivided these macrozones into 
microzones and directed sampling points to obtain sampling grids with predictions of higher 
quality than regular grids. Therefore, dividing the area to be mapped into management zones to 
infer soil macro and micro variability becomes a promising approach, as these zones represent 
sub-regions of a field with a certain homogeneity among attributes. In this regard, directing sample 
points based on the variability of these zones after zoning can lead to more accurate maps. 
However, relying solely on terrain may be limited in areas with gentle relief, and DEM products 
have low spatial resolution. In this context, magnetic susceptibility (MS) and vegetation indices 
(VI) could be substituted for DEM products, as they are covariates related to soil attributes. 
Another issue is that this method of allocating sample points results in an irregular grid, which can 
hinder spatial interpolation (Soares 2014). Therefore, it is necessary to study different sizes of 
sampling grids and the percentage of points to be directed to determine the sampling 
configurations that yield better mapping results. 
There are still many gaps regarding the best methods for creating soil maps for fertilizer 
prescription and understanding the complementarity of using combined techniques to achieve 
better prediction results. Therefore, the general objective of this research was to test whether 
directing sample points based on homogeneous zones determined by environmental covariates 
allows for producing more accurate digital soil maps compared to traditional maps from regular 
grids. Additionally, the study aimed to assess whether sample density impacts the outcomes of 
sample point targeting. 

Material and Methods 
Study Area 
The experiment was conducted in a commercial sugarcane field (20°51'42" S and 47°57'15" W) 
in the interior of São Paulo, Brazil. The study area covers 71 hectares and has been cultivated 
for ten years without soil tillage. The area's predominant soil is Ferralsols, and the climate is Aw 
(tropical savanna) in the Köppen system, with an average annual temperature of 22°C and an 
average annual precipitation of about 1300 mm. 
A dense soil sampling was conducted across the study area using a regular grid of 40 by 40 
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meters, corresponding to 6 sampling points per hectare, totaling 450 points (Figure 1a). Each 
sampling point consisted of a composite sample made up of six subsamples collected from a 
depth of 0 to 25 cm within a five-meter radius from the central point. The composite samples were 
sent to a commercial soil analysis laboratory to determine the levels of Phosphorus (P) and 
Potassium (K) and the soil texture (clay content). The descriptive statistics of the analyses are 
presented in Table 1. 

 
FIGURE 1. a) Total sampling points in a dense grid of 6 samples/ha; b) Soil magnetic susceptibility 
map; c) Synthetic map of the 5-year historical average of the peak vegetative EVI. 

Table 1. Descriptive statistics of the complete sampling for the study area's phosphorus, potassium, and clay content. 

 Mean Median S.Desviation C.V Minimum Maximum 

Clay 530.16 531.50 36.14 6.82 426.00 626.00 

K 1.42 1.30 0.37 26.07 0.80 3.30 

P 15.06 14.00 6.76 44.90 6.00 45.00 

 
Ambient Variables 
The methodology for sample optimization studied here aimed to infer the variability of the study 
area through the macro and micro spatial variability quantified by environmental covariates. The 
division into macro-regions sought to identify homogeneous soil zones and subdivide them into 
micro-regions representing the crop's response to soil variability, thereby directing sampling 
points. Soil Apparent Magnetic Susceptibility (MS) was the covariate used to delimit the macro-
regions. MS is a physical property dependent on the magnetic moments of atoms. In soil, MS is 
influenced by the amount of magnetic minerals present, primarily controlled by concentrations of 
magnetite and maghemite (Maher 1986). The application of MS in soil has been studied in 
agriculture as it allows for identifying and characterizing homogeneous areas (Matias et al. 2013), 
which can be applied in management zones due to its correlation with agronomic properties 
(Matos et al. 2023). MS data were obtained at a depth of 37.5 cm using the EM38MK sensor 
(Geonics), which was moved across the area, collecting data every second (~ five meters) along 
its path, with passes spaced 15 meters apart. These data were processed using ordinary kriging 
to create continuous rasters with a spatial resolution of 10 meters (Figure 1b). 
To obtain micro-regions we used a synthetic image comprising a time series. Thus, we were able 
to infer about vegetation homogeneity. Remote sensing was adopted to characterize plant 
variables using the Enhanced Vegetation Index (EVI). EVI (Equation 1) minimizes the effects of 
soil and atmosphere, proving effective in high plant vigor situations and is used to infer crop 
production (Justice et al. 1998). Images from Sentinel-2 over the last five years (2018-2023) were 
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utilized, with an annual image corresponding to the crop's vegetative peak, typically occurring in 
March each year. These images were composited to create a synthetic image with the average 
value from the five images (Figure 1c). The boundaries of each field were outlined ten meters 
inward from the area to reduce carrier reflectance effects in the synthetic image. 
EVI = 2.5 * (NIR - RED) / (NIR + 6 * RED - 7.5 * BLUE + 1)                           Eq. 1 
NIR – Near Infrared reflectance (Band 08 of Sentinel-2) 
RED – Red reflectance (Band 04 of Sentinel-2) 
BLUE – Blue reflectance (Band 02 of Sentinel-2) 
Inference of Soil Macro Homogeneity  
For the creation of homogeneous MS macrozones, the areas were divided using fuzzy C-Means 
clustering analysis (Cordoba et al. 2016; Oldoni et al. 2019). The selection of the optimal number 
of zones was based on the simultaneous analysis of the Fuzzy Performance Index (FPI) 
(Mcbratney and Moore 1985) and the Modified Partition Entropy (MPE) (Boydell and Mcbratney 
2002). The FPI reflects the degree of segregation between observations and the formed clusters, 
while the MPE expresses the degree of disorder within the clusters, providing a comprehensive 
view of the resulting structure. The appropriate number of clusters was determined based on the 
point of the lowest value on the curve, which indicated stabilization in the spatial heterogeneity of 
the data. This resulted in a smooth curve, suggesting that the marginal gain from increasing the 
number of zones became unnecessary. 
Determining the Optimal Number of Points per Homogeneous Macrozone 
The optimal number of points to be directed per zone was determined based on the variability of 
Magnetic Susceptibility (MS) and the size of each zone. Therefore, MS rasters were cropped for 
each zone, and using the Coefficient of Variation (CV) - a statistical measure that explains the 
percentage of pixel variation relative to the mean - the proportional number of samples was 
determined based on the area size. Essentially, larger areas with higher CV received more points 
per zone. The formula used to determine the number of points was adapted from Wang et al. 
(2023) (Equation 2), which starts from an arbitrarily defined number of samples, typically based 
on practical field constraints such as budgetary considerations for surveying. 
In this context, four sampling density scenarios were explored: testing the density of one sample 
per hectare, often considered a desired density to achieve, and the density of one sample every 
2.5 hectares (0.4 samples per ha), commonly adopted in-field practices to optimize survey costs 
involving sampling and laboratory analysis. Both sampling densities directed 25% and 50% of 
points using this strategy, with the remaining 75% and 50% following a regular grid pattern. 

SNh = SN⋅Ah⋅CVh / ∑l  Ah ⋅ CVh                                                                        Eq. 2 
SNh – Number of points in each macrozone; 
SN – Number of samples to be directed over the entire area, arbitrarily defined; 
Ah – Area of the macrozone under study; 
CVh – Coefficient of variation of MS in each macrozone 
Inference of Soil Micro Homogeneity 
For the subdivision of homogeneous zones into smaller regions to indicate the sampling locations 
for each soil sample, referred as microvariability, the macrozones were divided into microzones. 
The technique employed utilized only the synthetic EVI image. The Fuzzy C-means clustering 
method (FCM) (Bezedek et al. 1984) was applied to this image to create homogeneous 
microzones (Cordoba et al. 2016). This approach allowed subdividing the macro homogeneous 
zones derived from MS into homogeneous EVI microzones. The microzones in each macrozone 
was determined based on the number of directed points for the study area, calculated using 
Equation 2. 
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Determination of the location of additional points  
Following the methodology adapted from Wang et al. (2023), where each macrozone 
accommodated a certain amount of sampling points equal to the total number of microzones, 
each microzone received one directed point. Therefore, the pixels within the zones generated by 
the Fuzzy-C-Means cluster algorithm has dynamic classification and may have different degrees 
of membership in each cluster (microzone) for each pixel on the map. Thus, to sample the location 
that is most likely to represent the respective microzone, the pixel with a membership value 
closest to 1 within each microzone was adopted as the sample selection point within the 
previously densely sampled grid. 
Interpolation 
After directing the soil sampling points at each percentile level (25% and 50%), based on each 
sampling density (1 sample/ha and 0.4 samples/ha), according to homogeneous soil macrozones, 
the values of the selected soil samples were integrated into the equivalent regular grid (Figure 2). 
Subsequently, these values underwent a data interpolation process to generate maps. Ordinary 
kriging was employed for this purpose, following all the principles of variographic modeling as 
suggested by Oliver and Webster (2014). 

 
Figure 2. a) Regular grid 0.4 samples/ha; b) Grid with 25% of sampling points directed at 0.4 
samples/ha density; c) Grid with 50% of sampling points directed at 0.4 samples/ha density; d) 
Regular grid 1 sample/ha; e) Grid with 25% of sampling points directed at 1 sample/ha density; f) 
Grid with 50% of sampling points directed at 1 sample/ha density. 
Analysis Approach: 
An external validation procedure was adopted to assess whether the sample optimization based 
on the proposed methodology improves the quality of soil fertility maps compared to a regular 
sampling grid with the same number of samples. Therefore, the sampling points not used in 
constructing the grids served as the reference, resulting in 369 and 264 validation points for the 
0.4 samples/ha and 1.0 samples/ha grids, respectively. The interpolated values of different soil 
properties were extracted at the coordinates of these external validation points. Thus, the actual 
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values were compared with the predicted values using Root Mean Square Error (RMSE) and 
Spearman's correlation coefficient (r). 
Additionally, adjustments to the variograms were explored to identify if increasing the percentage 
of directed points improved the capture of spatial variability. Furthermore, the Moran's Index was 
also calculated to infer if the spatial clustering of soil properties aligned with the proposed 
methodology.   

Results and Discussion  
Mapping Clay Content 
1 sample/hectare 
The sample configuration with 50% of directed sampling points at one sample per hectare density 
yielded the best prediction results for clay content in the experimental area (Table 2). The RMSE 
for clay content showed slightly better results for the grid with 50% directed points, with a value 
of 31.82 g/kg, while the error for the regular grid was 31.95 g/kg, followed by 33.79 g/kg for the 
grid with 25% directed points. However, these values are very close, indicating little difference 
between the sampling configurations. This similarity may be associated with soil homogeneity 
within the study area, as evidenced by the variability scale of complete grid sampling (Table 1), 
showing low data variability with a coefficient of variation of about 6%, and a clay content ranging 
from 426 to 626 g/kg. Despite the differences in grid types, both 1 sample/ha grids delivered 
satisfactory results for mapping this attribute (Figure 3). Studies on increasing the number of soil 
sampling points in agricultural fields have shown that uncertainty in kriging mapping tends to 
decrease as the number of sampling points increases (Amaral and Justinna, 2019; Cherubin et, 
al. 2014; 2015). Our results support these findings, as the density of 1 sample per hectare, 
regardless of grid type, accurately characterized soil variations, suggesting that the regular grid 
can be used for clay mapping, as it requires less operational effort and delivers satisfactory results 
at this density. 
  

Table 2. Soil clay content prediction performance for the validation samples based on different sampling point allocation 
methods at two sampling densities. The best results are in bold. 

                        25%                             50%                        Regular 

  RMSE r RMSE r RMSE r 

1 samples/ha         33.79 0.45 31.82 0.52 31.95 0.51 

0.4 samples /ha         31.91 0.44 35.65 0.39 34.39 0.40 

RMSE: Root Mean Square Error; r: Spearman's correlation coefficient 
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Figure 3. a) Clay map derived from the regular grid with a density of 1 sample/ha; b) Clay map 
derived from the grid with 25% of the sampling points directed with a density of 1 sample/ha; c) 
Clay map derived from the grid with 50% of the sampling points directed with a density of 1 
sample/ha; d) Clay map derived from the regular grid with a density of 0.4 sample/ha; e) Clay 
map derived from the grid with 25% of the sampling points directed with a density of 0.4 
sample/ha; f) Clay map derived from the grid with 50% of the sampling points directed with a 
density of 0.4 sample/ha.  
 
0.4 sample/ha 
On the other hand, when considering the characterization of clay through the grid with 0.4 
sampling points per hectare, directing 25% of the sampling points proved more effective for 
mapping (Table 2). The reduction in sampling uncertainty was more pronounced in this 
configuration, allowing for a more precise capture of soil variability when points were directed. 
Although results were more favorable with 25% of the sampling points directed, the analysis of 
the correlation between covariates and the attribute in question suggests that the improvement 
was not directly due to the directing method, as there was no clear correlation between the 
covariates and the attribute (Table 3). In the regular grid of 0.4 samples per hectare, the distance 
between sampling points is approximately 158 meters. Examining the variogram parameters for 
interpolation of the grid with all sampling points, it becomes evident that the range is 220 meters, 
indicating low spatial dependence even with a sampling density of 6 points per hectare (Table 4). 
This pattern is corroborated by Moran's index, which also suggests reduced spatial clustering 
(Table 4). Previous studies have highlighted that the distribution of random points within the 
regular sampling grid tends to result in lower mapping errors than a completely regular grid (Baio 
et al., 2023). The results of this study align with these findings, as even in the absence of a clear 
relationship between the attribute and covariates, directing points proved effective by maintaining 
spatial coverage in 75% of the regular points, while the 25% directed points allowed for shorter 
distances, thus improving interpolation quality. However, directing 50% of the points resulted in 
loss of equidistance between points, yielding the worst results among the three configurations. 
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The low clay variability in this area makes directing 50% of the sampling points inefficient, as the 
methodology requires attribute variability and correlation between it and the covariates, which 
was not found in this study. Therefore, directing 25% can provide superior results while adopting 
a more conservative approach, as it initially maintains spatial coverage of the area and provides 
points at closer distances, favoring the capture of variability. Thus, directing points becomes more 
advisable for mapping clay in sparse grids than using a regular sampling grid. 
 

Table 3. Spearman correlation between soil attributes and environmental variables used for delimitation of macro and 
microzones. 

 P K Clay MS EVI 
P 1.00     
K 0.170 1.00    
Clay -0.003 0.086 1.00   
MS -0.370 -0.001 0.140 1.00  
EVI  -0.350 -0.059 0.012 0.310 1.00 

 
Table 4. Variogram parameters (range – m (A), nugget effect (C0), and sill (C1)); and cross-validation (RMSE and r² between 

predicted and observed) for soil attributes phosphorus (P), potassium (K), and clay; spatial clustering measured by 
Moran's index and its significance. 

 C0 C1 A RMSE r model Moran significance 

P 12 30 400 4.78 0.70 Exp 0.46 0.001 

K 0.04 0.1 395 0.29 0.57 Exp 0.29 0.001 

Clay 200 1000 220 26.06 0.68 Exp 0.36 0.001 

 
Phosphorus Mapping 
1 sample ha 

A regular grid sampling resulted in the best mapping of P, followed by the grid with 25% of directed 
sampling points and subsequently by the grid with 50% at a density of 1 sample per hectare. The 
P maps demonstrate the grids' ability to map the nutrient, where the regular grid allows for well-
defined delineation of regions with low and high concentrations of the element, a similar behavior 
observed for the 25% grid but with a smoother representation of these regions. On the other hand, 
the 50% directed points grid generated a completely smooth map, making it unable to identify 
regions of high and low attribute availability (Figure 3a, 3b, and 3c). The best variogram 
adjustments, as well as the largest clusters, were observed for phosphorus in the grid with total 
points (Table 4), a behavior that is not commonly observed, as phosphorus often exhibits a highly 
random distribution, as reported in several studies (López-Castañeda et al. 2022; Bortega et al. 
2013; Silva and Chaves, 2001). This farm has a history of sugarcane cultivation, with 10 years 
without area renovation (replanting), where fertilization with this nutrient is applied in low doses 
along the ratoons, aiming to maintain soil fertility without depleting it, contributing to a certain 
stability in soil nutrient levels due to natural conditions. For the grid with one sample per hectare, 
the best RMSE and correlation results between predicted and observed values were associated 
with the regular grid (Table 5), as expected, since this density satisfactorily supports digital 
mapping through ordinary kriging (Cherubins et al. 2014; AmaraL and Justinna 2019). 
Additionally, the number of sample points (71) meets the recommendations for variogram 
adjustments (Oliver and Webster 2014). Therefore, similar to what was observed for clay, when 
the sample density used is sufficient to capture property variability, zoning with covariates to direct 
sampling does not contribute to modeling variability and, consequently, improving predictions, 
even if the covariates show high correlations with the soil attribute (Table 3). Thus, similarly to 
clay, regular grid sampling is recommended for dense mapping as it accurately maps the attribute 
without the need for greater computational and operational effort. 



Proceedings of the 16th International Conference on Precision Agriculture 
21-24 July, 2024, Manhattan, Kansas, United States  

9 

 
Figure 3. a) P map derived from the regular grid with a density of 1 sample/ha; b) P map derived 
from the grid with 25% of the sampling points directed with a density of 1 sample/ha; c) P map 
derived from the grid with 50% of the sampling points directed with a density of 1 sample/ha; d) 
P map derived from the regular grid with a density of 0.4 sample/ha; e) P map derived from the 
grid with 25% of the sampling points directed with a density of 0.4 sample/ha; f) P map derived 
from the grid with 50% of the sampling points directed with a density of 0.4 sample/ha. 
 

Tabela-5. Performance in mapping phosphorus (P) content for validation samples based on different sampling point 
allocation methods at two sampling densities. The best results are in bold. 

                 25%                         50%                           Regular 

  RMSE r RMSE r RMSE r 

1 samples/ha       5.59 0.67 6.28 0.65 5.56 0.68 

0.4 samples /ha        5.96 0.58 5.20 0.71 6.54 0.55 

RMSE: Root Mean Square Error; r: Spearman's correlation coefficient. 

 
0.4 sample ha 

 However, for the sparse grid of 0.4 sample points per hectare, directing 50% of the points using 
the proposed methodology resulted in a more significant reduction in sampling error, followed by 
directing 25% of the points and the regular grid (Table 5). Directional sampling proved effective 
in this case as it adhered to the principle of spatial coverage, allowing for point allocation at shorter 
distances, which favored variogram adjustments. Directional sampling enabled better 
identification of areas with pronounced variations (Figure 3d, 3e, and 3f), unlike the regular grid, 
which tends to smooth estimates due to the absence of points at shorter lags. Another point to 
highlight was the correlation between the measured variables and the target attribute (Table 3). 
Since the methodology aims to capture attribute variability based on covariate variability, 
correlation becomes key to success. Thus, obtaining a wider range of values for the target variable 
becomes possible, which tends to improve modeling. 
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Finally, as the clustering technique used in zone creation aims to minimize the variability of 
covariates within each zone and maximize differentiation between clusters, there must be 
variability for this objective to be achieved. This can be observed in soil sampling data, where the 
highest variability among attributes is found for phosphorus (Table 1). Therefore, when using this 
method, a preliminary exploration of correlations between variables is necessary, aiming to use 
one or more auxiliary variables related to the variable being mapped (Push et al., 2023). Plant, 
soil, topography, and even management covariates may influence the spatial distribution of soil 
chemical properties, and thus, the dataset needs to be thoroughly explored in each specific 
situation. In this case, a two-stage sampling plan could be an option (Szatmári et al. 2019). If 
these observations are met, directed grid sampling for mapping P at low sample densities is 
recommended, as it tends to reduce passive sampling errors associated with regular grids. 
Potassium Mapping 
1 sample ha 

The potassium (K) mapping with regular sample points for one sample per hectare grid provided 
better predictive results, followed by the grids with 50% and 25% of directed points (Table 6). 
These results are evident when observing the maps of the areas where the smoothing of the 
maps occurred gradually with the increase in the number of directed points (Figure 4a, 4b, and 
4c). The Moran's index shows low clustering among samples (Table 4) for the total points grid (6 
samples per hectare), and cross-validation parameters indicate low spatial dependence (Table 
4), meaning high nugget effect and low contribution, which suggests that a significant portion of 
the data variability is not related to its location. Thus, the poorer results for K seem to be 
associated with the poorer fitting of the variograms (Table 4). Sugarcane cultivation requires large 
amounts of this nutrient (Cantarella et al. 2022), which is generally applied at fixed rates across 
the areas. Another point to highlight is that sugarcane can absorb more of this nutrient than 
necessary for its optimal growth and production (luxury consumption), significantly reducing the 
element's levels in the soil (Otto et al. 2019). Thus, over the fertilization cycles, the spatial 
distribution of this attribute becomes more random due to management practices and nutrient 
extraction by the crop, leading to diminished gains when using combined covariate optimization 
sampling methods. Therefore, in this case, using regular grids would be more appropriate as it 
allows for more precise mapping and requires less effort than directional methods. 
 

Tabela-6. Performance in mapping potassium (K) content for validation samples based on different sampling point 
allocation methods at two sampling densities. The best results are in bold. 

        25%          50%         Regular 

  RMSE r RMSE r RMSE r 

1 samples/ha 0,45 0,45 0,35 0,40 0,34 0,49 

0.4 samples /ha 0,37 0,12 0,35 0,5 0,36 0,24 

RMSE: Root Mean Square Error; r: Spearman's correlation coefficient 
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Figure 4. a) K map derived from the regular grid with a density of 1 sample/ha; b) K map derived 
from the grid with 25% of the sampling points directed with a density of 1 sample/ha; c) K map 
derived from the grid with 50% of the sampling points directed with a density of 1 sample/ha; d) 
K map derived from the regular grid with a density of 0.4 sample/ha; e) K map derived from the 
grid with 25% of the sampling points directed with a density of 0.4 sample/ha; f) K map derived 
from the grid with 50% of the sampling points directed with a density of 0.4 sample/ha. 
 
0.4 sample ha 

However, sample targeting yielded the best prediction results for the sparsest grid (0.4 samples 
per hectare). The allocation of points resulted in better prediction performance (RMSE and r), with 
50% of sample points allocated (Table 6), performing better than the 1 point per hectare sampling. 
The result from the regular grids and those with 25% of points allocated was unsatisfactory, as 
the observed spatial dependence is low. Therefore, these grids have greater coverage of sample 
points in the area, which contributes to generating unsatisfactory results by losing the 
equidistance between point pairs, thereby not capturing the spatial dependence of K as well as 
the 50% directed grid (r = 0.5), as can be seen in figures (4d, 4e, and 4f). Previous studies have 
shown that very sparse regular grids are not recommended as they lose the ability to capture 
spatial dependence (Cherubin et al. 2014). However, using covariates diminishes the effect of 
reduced soil sample density (Teixeira et al. 2017). In this research, we confirm these findings, as 
allocating points at short distances through auxiliary information for zoning improved predictions 
due to capturing this low spatial dependence through better variogram adjustments. Authors like 
Wang et al. (2023) have also reported that directing sample points using fuzzy methodology leads 
to lower sampling errors compared to other targeting methods for mapping K, especially with a 
limited number of soil samples. Therefore, directing 50% of sample points based on soil moisture 
and historical EVI can be a viable alternative to obtain more accurate digital soil maps for 
characterizing K in sparsely sampled grids. 
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Conclusion 

For mapping using directed grids with one sample per hectare, we observed a slight predictive 
gain only in clay content compared to the regular grid. However, even for this attribute, there are 
no significant gains with allocation, as the regular grid at this density can accurately capture spatial 
dependence. Another point is that targeting can lead to loss of equidistance and may even impair 
mapping results. Therefore, in sampling situations with a density of one sample per hectare for 
mapping the tested attributes, using a regular grid continues to be recommended, as this density 
is sufficient to capture soil variability. 

Although mapping with a sparse grid of 0.4 samples per hectare produces poor predictive results, 
sample targeting has been shown to reduce interpolation errors compared to a regular grid. In 
this study, we tested two chemical and one physical attribute, finding that targeting in a sparse 
grid was more effective. Spatial dependence, high variability of the target attribute, and correlation 
between covariates and mapped attributes result in more accurate maps when 50% and 25% of 
points are targeted compared to a regular grid. However, without prior knowledge of these 
parameters, agronomic knowledge can serve as a valuable indicator, as targeting aims to capture 
soil variability based on covariate variability. Thus, when mapping in a sparse grid, we recommend 
targeting 50% of sample points, as this helps mitigate prediction errors associated with low-
density sampling.  
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