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Abstract.  
This paper presents the development and validation of machine learning models for the detection 
of powdery mildew in vineyards. The models are trained and validated using custom datasets 
obtained from unmanned aerial vehicles (UAVs) equipped with a hyperspectral sensor that can 
collect images in visible/near-infrared (VNIR) and shortwave infrared (SWIR) wavelengths. The 
dataset consists of the images of vineyards with marked regions for powdery mildew, annotated 
using LabelImg.  Model training is accomplished using neural networks, XGBoost, and stacking. 
Different vegetation indices calculated using the hyperspectral data such as normalized difference 
vegetation index (NDVI) are used for the model training along with the data collected from 
proximal sensors that include CM 1000 Chlorophyll Meter. Expert visual rating of disease severity 
is also used for training the models. The models offer mapping functionality to determine the exact 
position of the detected plants. For the model validation, a different set of remote sensing, 
proximal sensor, and visual inspection data are used. By integrating the Segment Anything Model 
(SAM) for precise segmentation and fine-tuning the YOLOv10 model for accurate vine tree 
detection in drone imagery, segmentation and object detection will improve. Performance of the 
models trained using the three techniques are compared.   
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Introduction 
UAV-based hyperspectral sensing combined with machine learning techniques have potential for 
monitoring and early detection of powdery mildew (PM) in grapes and can be an integral part of 
an Integrated Pest Management program for viticulture. UAVs can cover a large area in a short 
amount of time. They can provide high resolution data for the detection of diseases throughout 
the crop growth season at a low cost.  Despite these potentials, UAV technologies has not yet 
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seen widespread adoption by farmers for the detection and treatment of diseases. Traditional 
methods of PM detection involves visual inspection [3]. But, for the agronomist to be able to 
detect, the PM symptoms must already be visible when the damage is already done and disease 
is already spreading. Human eyes can only see the visible light of the electromagnetic spectrum 
from 350 nm to 700 nm. Near infrared (NIR) and shortwave infrared (SWIR) sensors can see the 
reflected light in 700 nm to 2500 nm spectral range, thereby helping early detection of PM and 
other diseases [4]. When grape is subjected to PM stress, its spectral reflectance changes 
according to physiological and biochemical changes in its leaves, such as decreased chlorophyll 
content or destroyed cell or structure [5] or water stress.  
It is important to identify PM early. Early detection helps control the diseases through early 
intervention.  In addition, for large farms, visual inspection takes long time, is labor intensive, and 
is costly. Moreover, the disease can be detected visually at middle to late stages of infection. This 
paper presents the use of UAV-based hyperspectral sensing and machine learning techniques 
for the detection and prediction of powdery mildew in grapes. Hyperspectral data collected from 
UAVs, digital images, visual inspection data, and proximal sensor data are used to develop 
machine learning models. The models are then used to detect the disease and disease severity.   
One of the main advantages of machine learning technique is that they have potential to provide 
required information in real-time as UAVs are flying and collecting data, eliminating the need for 
post processing. This will be helpful in making immediate and real-time decisions such as 
application of fungicides immediately after the collection of the data from the UAVs. This reduces 
the turnaround time and helps reduce the impact of infection.   

Data Collection and Processing 
Cal Poly Pomona’s existing vineyard, which is shown Figure 1, is being used for this research 
[Acosta et al., 2024]. At the early stages of PM infection, the disease is not usually visible on the 
canopy, and that is one of the challenges with the early detection of the disease using remote 
sensing technique.  

     
Fig. 1. Cal Poly Pomona vineyard (left) and a PM infected grape leaves and fruits (right). 

Remote sensing data was collected from a DJI Matrice 600 multicopter that is equipped with a 
co-aligned hyperspectral sensor from Headwall [Acosta et al., 2024] as shown in Fig. 2. The 
proximal sensor data collected include NDVI (normalized difference vegetation index) using 
FieldScout CM 1000 meter and chlorophyll content using a SPAD Plus Chlorophyll meter [Acosta 
et al., 2024]. 
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Fig 2. Hyperspectral data collection of the vineyard from the UAV. 

In addition, visual rating of disease severity was also collected as shown in Figure 3 [Acosta et 
al., 2024]. In the scale of 1-5, 1 is the least affected or diseased and 5 is the rating for the leaves 
with the most severe disease conditions. The visual rating data was also used for the machine 
learning model training as discussed later.   

 
Fig 3. Visual rating of the disease severity. 

Data Processing 
The hyperspectral data from the co-aligned senor was processed using the AgView and Spectral 
View Software from Headwall [Acosta et al., 2024]. The processed remote sensing data was then 
used to calculate various vegetation indices including Red Edge Ratio, NDVI, modified NDVI 
(mND705), photochemical reflectance index (PRI), and modified chlorophyll absorption ration index 
(MCARI). Figure 4 shows the correlation between WBI and NIR reading obtained from the NDVI 
meter as an example. A Pearson correlation coefficient (ρ) of -0.49 was obtained.   
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Fig 4. Relationship between UAV WBI and NIR reading (ρ = -0.49, p = 6 x 10-5). 

Machine Learning Pipeline 

Vine Detection and Segmentation 
The initial step involves using object detection techniques to detect grape vines on the collected 
images. These models, trained on a dataset of annotated images, accurately identify the presence 
and location of vines within the images. Then, the bounding boxes are fed into segmentation 
models, which are used as the prompt encoder to perform pixel-wise classification of the images, 
creating a detailed mask that highlights the exact regions occupied by the vines. This dual 
approach ensures comprehensive representation by providing both bounding boxes from object 
detection models and precise masks from segmentation models. Figure 5 shows a UAV image of 
the vineyard.  

 
Fig. 5 UAV image of the vineyard.  

Figure 6 on the left shows the detected vines in the image collected by the UAV. Figure 6 on the 
right shows the pixelwise classification of the vines.  
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Fig. 6 Detected vines (left) and pixelwise classification of the images (right).   

Bounding Box and Mask Extraction 
Once the vines are detected and segmented, the next step involves extracting the bounding boxes 
produced by the object detection models along with the corresponding masks from the 
segmentation models. This process is critical for isolating the vines at a pixel level. Bounding 
boxes alone may include extraneous pixels from the ground or nearby vegetation, which could 
interfere with the accuracy of subsequent analyses. By combining the bounding boxes with 
precise masks, we ensure that only the pixels representing the vines are considered, enhancing 
the precision of our data. For the analysis in the next phase, only the union of the bounding boxes 
and their corresponding masks are considered.  

 
Fig. 7 Bounding boxes with their corresponding masks.   

GPS locations of the sensors are used to map the collected data to the bounding boxes and 
masks of the vines detected by the developed models. This mapping process ensures that each 
vine's hyperspectral features are associated with accurate, real-world measurements, providing 
a reliable basis for model training and validation. 

Training and Validation 
In this phase, the available datapoints, both remote sensing and ground truth data, are utilized to 
ensure that our models are trained on high-quality, accurate data. This selective approach 
enhances the ability of the developed models to effectively detect and diagnose vine health 



Proceedings of the 16th International Conference on Precision Agriculture 
21-24 July, 2024, Manhattan, Kansas, United States  

6 

issues. Three different machine learning algorithms are used: a custom neural network, XGBoost, 
and a stacking algorithm. The data is divided into training and validation sets to evaluate the 
models' performance. During training, the models learn to identify and predict vine health 
indicators. Validation data set is used to assess the models' performances and make necessary 
adjustments to improve the accuracy and reliability of the developed models.  
Once we have achieved good results on our validation sets, we can apply our method to detect 
powdery mildew and assess plant health in all the grapevines detected through our object 
detection and segmentation models. Using the trained and validated models, we process the 
images to identify and diagnose health issues in the vines. The combination of bounding boxes 
and masks ensures precise analysis, and the extracted hyperspectral features provide detailed 
insights into the health status of each vine. This method allows for large-scale monitoring and 
management of vineyard health, enabling timely interventions and improving overall grapevine 
productivity. 

Machine Learning Models 

Object Detection  

We have utilized the YOLOv10 (You Only Look Once version 10) model and fine-tuned it on our 
drone imagery dataset to specifically detect vine trees. This customization ensures high accuracy 
in identifying and localizing vine trees within aerial images captured by our drones, enhancing the 
precision and reliability of our detection system. 

The YOLOv10 architecture represents a significant advancement in real-time object detection. It 
incorporates various strategies to improve both efficiency and accuracy, addressing the issues 
found in previous YOLO versions. The architecture includes a backbone, a neck, and a head, with 
enhancements in each part to optimize performance. 

The backbone of YOLOv10 uses a combination of convolutional layers to extract features from 
the input image. It leverages large-kernel convolutions and partial self-attention (PSA) modules 
to enhance the model's capability. The large-kernel convolution, specifically a 7×7 kernel, 
increases the receptive field, enabling better context capture for each pixel. The PSA module 
splits the feature map into two parts, processing only one part through a multi-head self-attention 
mechanism, which reduces computational cost while maintaining performance (Wang et al., 
2024).  

For the neck, YOLOv10 explores several feature fusion techniques such as PAN (Path 
Aggregation Network), BiC (Bidirectional Cross-scale), and GD (Global Dilated convolution). 
These techniques enhance multi-scale feature fusion, crucial for detecting objects of various 
sizes. Additionally, the architecture employs a spatial-channel decoupled downsampling method 
to reduce computational overhead. This method separates spatial reduction from channel 
increase operations, resulting in significant computational savings (Wang et al., 2024).  

The head of YOLOv10 consists of a classification and regression part. It introduces a lightweight 
classification head that uses depthwise separable convolutions, significantly reducing the 
parameter count and computation. The dual label assignment strategy in the head ensures 
efficient and accurate bounding box predictions. During training, both one-to-many and one-to-
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one label assignments are used, providing rich supervision and reducing the reliance on non-
maximum suppression (NMS) during inference (Wang et al., 2024). 

YOLOv10 uses several loss functions to train the model effectively. The Box Loss (L_box) is 
designed to measure the discrepancy between the predicted bounding boxes and the ground 
truth boxes. This loss function is defined as: 

  𝐋𝐛𝐨𝐱 = ∑ 𝒘𝒊	. 𝑰𝒐𝑼(𝒃𝒊, 𝒃%𝒊)𝑵
𝒊'𝟏            (1) 

where N denotes the number of bounding boxes, 𝒘𝒊 is a weight assigned to the i-th box, 𝒃𝒊 
represents the predicted bounding box, and 𝒃𝒊% is the corresponding ground truth box. The 
Intersection over Union (IoU) metric is used to evaluate the overlap between the predicted and 
ground truth boxes, ensuring that the model learns to produce precise bounding box coordinates 
(Wang et al., 2024; Zheng et al., 2019). 

The Class Loss (L_cls) focuses on the accuracy of the predicted class labels. It is defined as: 

𝑳𝒄𝒍𝒔 =	∑ ∑ −𝒚𝒊𝒄𝐥𝐨𝐠	(𝒑𝒊𝒄)𝑪
𝒄'𝟏

𝑵
𝒊'𝟏           (2) 

In this equation, N is the number of instances, C is the number of classes, 𝒚𝒊𝒄 is a binary indicator 
(0 or 1) of whether class c is the correct classification for instance i, and 𝒑𝒊𝒄 is the predicted 
probability for class c. This loss function ensures that the model's predictions for class probabilities 
are accurate, encouraging the network to correctly classify objects within the image (Wang et al., 
2024). 

The Distribution Focal Loss (DFL) is introduced to address the imbalance in class distributions, 
giving more importance to hard-to-classify examples. It is formulated as: 

𝑳𝑫𝑭𝑳 =	=
0𝟏
𝑵
	∑ ∑ −𝒚𝒊𝒄 𝐥𝐨𝐠(𝟏 − 𝒑𝒊𝒄)𝜸 𝐥𝐨𝐠	(𝒑𝒊𝒄)𝑪

𝒄'𝟏
𝑵
𝒊'𝟏               (3) 

where γ is a focusing parameter that controls the strength of the focal effect. By emphasizing the 
misclassified examples, this loss function helps the model to focus on learning difficult instances, 
thereby improving its overall robustness and accuracy (Wang et al., 2024; Li et al., 2020). 

Lastly, the optimization process in YOLOv10 is driven by the Stochastic Gradient Descent (SGD) 
optimizer. The update rule for the SGD optimizer is: 

𝛉𝐭3𝟏 = 𝛉𝐭 − 𝛈𝐭(𝛁𝛉𝐋(𝛉𝐭) + 𝛌𝛉𝐭)                                             (4) 

In this equation, 𝜽𝒕 represents the model parameters at iteration t, 𝜼𝒕 is the learning rate at 
iteration t, 𝛁𝛉𝐋(𝛉𝐭) is the gradient of the loss function with respect to the model parameters, and 
λ is the weight decay parameter. The weight decay term helps in regularizing the model by 
penalizing large weights, thereby reducing the risk of overfitting (Wang et al., 2024). 

YOLOv10 combines advanced techniques to enhance performance and efficiency in real-time 
object detection. By fine-tuning YOLOv10 on our specific dataset, the model has learned the 
unique features of vine trees in aerial imagery, making our detection system robust and accurate. 

Segmentation 
In our work, we have incorporated the Segment Anything Model (SAM) as the backbone for 
segmentation tasks, enhancing our pipeline's efficiency and accuracy. The output of our object 
detection model is used as the input bounding boxes for SAM, which then performs pixel-wise 
classification within these bounding boxes to create detailed masks. This approach ensures that 
our segmentation process remains robust and responsive. 
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The architecture of the Segment Anything Model (SAM) consists of three main components: a 
Vision Transformer (ViT) backbone, a prompt encoder, and a mask decoder. The ViT backbone 
processes the input image to generate detailed feature maps by capturing long-range 
dependencies and high-level features. The prompt encoder takes user inputs, such as points, 
bounding boxes, or initial masks, and converts them into a format that informs the model about 
the object or region of interest. These encoded prompts, along with the feature maps, are then 
fed into the mask decoder, which iteratively refines the segmentation mask, aligning it precisely 
with the object's edges. This combination of a powerful feature extractor, flexible user input 
handling, and iterative mask refinement allows SAM to achieve high accuracy and adaptability 
across diverse segmentation tasks (Kirillov et al., 2023). 

 
Fig. 8 Segmentation Anything Model (SAM) architecture. 

The training algorithm for SAM involves simulating interactive segmentation with several key 
steps. Initially, a foreground point or bounding box is randomly selected for the target mask. Points 
are sampled uniformly from the ground truth mask, while boxes are perturbed with random noise. 
Subsequent points are then selected from the error region between the previous mask prediction 
and the ground truth mask. This process continues with up to eight iteratively sampled points, 
followed by two iterations without additional points. Losses are calculated after each iteration and 
backpropagated to update the model parameters (Kirillov et al., 2023). 

SAM employs a combination of focal loss and dice loss in a 20:1 ratio, along with mean-square-
error loss for Intersection over Union (IoU) prediction (Kirillov et al., 2023). The focal loss 
addresses class imbalance by focusing more on hard-to-classify examples, and is defined as: 

𝑭𝒐𝒄𝒂𝒍	𝑳𝒐𝒔𝒔 = −𝒂𝒕(𝟏 − 𝒑𝒕)𝜸	𝐥𝐨𝐠	(𝒑𝒕)                                     (5) 

Where 𝒑𝒕 is the model's estimated probability for the true class (Lin et al., 2018). The dice loss 
measures the overlap between the predicted and ground truth masks, and is defined as: 

𝑫𝒊𝒄𝒆	𝑳𝒐𝒔𝒔 = 𝟏 − 𝟐|𝑨∩𝑩|
|𝑨|3|𝑩|

                       (6) 

where 𝑨 is the set of predicted pixels, and 𝑩 is the set of ground truth pixels (Sudre et al., 2017). 
The mean-square-error loss, used for the IoU prediction head, estimates the IoU between each 
predicted mask and the object it covers, and is defined as: 

𝑴𝑺𝑬	𝑳𝒐𝒔𝒔 = 𝟏
𝒏
∑ (𝒚𝒊 − ŷ𝒊)𝟐𝒏
𝒊'𝟏             (7) 

where 𝒚𝒊 is the ground truth IoU, and ŷ𝒊 is the predicted IoU (Kirillov et al., 2023). 

By integrating SAM as the backbone for segmentation and using the bounding boxes from our 
object detection model, we have created a system capable of delivering precise segmentation 
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results with high accuracy. This approach ensures that our segmentation process is robust and 
reliable, making it suitable for applications requiring high precision. 

Model Training 
Three different approaches are used to learn the mapping of the features with ground truth data 
as discussed below.  
Neural Networks 

Neural networks are computational models inspired by the human brain's structure, comprising 
layers of interconnected neurons. The architecture typically includes an input layer, multiple 
hidden layers, and an output layer. Neurons apply nonlinear activation functions such as ReLU, 
sigmoid, or tanh. Training involves backpropagation to calculate gradients and gradient descent 
to optimize weights and biases, minimizing a specified loss function. These models are highly 
effective for complex pattern recognition tasks due to their ability to model nonlinear relationships 
(Schmidhuber, 2015). 
In this case, a neural network with ReLU activation functions in the hidden layers and a softmax 
activation function in the output layer was used for predicting plant health. The ReLU (Rectified 
Linear Unit) activation function is defined as: 

𝑅(𝑥) = max	(0, 𝑥) 
   (8) 

where x is the input to a neuron. The softmax activation function is defined as: 

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑥<) =
=!"

∑ =!?#
$%&

                                                         (9) 

where 𝑥< is the input to the 𝑖-th neuron in the output layer and 𝑁 is the number of output neurons. 
 
XGBoost 

XGBoost is an efficient and scalable machine learning algorithm based on gradient boosting. It 
builds an ensemble of weak learners, typically decision trees, in a sequential manner where each 
tree corrects the residual errors of the previous ones by optimizing a differentiable loss function 
through gradient descent. The iterations can be shown in the following formula: 

ŷ<
(A) = ŷ<

(A0C) + 𝑓A(𝑥<)  (10) 

Where 𝑓A is the decision tree at the 𝑡-th iteration. XGBoost incorporates both L1 (Lasso) and L2 
(Ridge) regularization to control overfitting and complexity of the models. α is used for L1 with a 
default of 0, and λ is for L2 with a default of 1. It efficiently handles sparse data and missing values 
and supports parallel processing, enhancing computational performance and scalability. The 
algorithm can also prune the trees to avoid overfitting (Chen & Guestrin, 2016). 
Stacking 

Stacking, or stacked generalization, is an ensemble learning method that integrates multiple 
models to improve predictive performance. It involves training several base models (level-0) on a 
dataset and then using their outputs as input features for a second-level model (meta-learner or 
level-1). The meta-learner is trained to optimize the combination of base model predictions. This 
method typically employs cross-validation to prevent overfitting and ensures the meta-learner 
effectively generalizes from the base model outputs, leveraging their diverse strengths. 
In this approach, three base learners, including Support Vector Machine (SVM), Random Forest, 
and Extreme Gradient Boosting (XGB), were used. The meta-learner was logistic regression.  
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Results and Discussion  
In this study, we evaluated the performance of three different machine learning models, Neural 
Network, XGBoost, and a Stacking Model on predicting plant health. The models were assessed 
based on their accuracy, recall, precision, and F1-score on the testing dataset.  

Table 1. Precision, recall, and F1 score of the models on the testing dataset. 
 

Model Precision Recall F1 Score 

Neural Network 0.8750 1.0000 0.9333 

XGboost 0.8571 0.8571 0.8571 

Stacking 0.6049 0.7778 0.6806 

Figure 9 shows the training and test accuracy of the three models.  

 
Fig. 9 Train and test accuracy comparison for Neural Network, XGBoost, and Stacking Models. 

The Neural Network achieved a training accuracy of 91.43% and a testing accuracy of 88.89%. 
This high level of performance indicates that the model learned the training data well and 
generalized effectively to unseen data. With a precision of 0.8750 and a perfect recall of 1.0000, 
the Neural Network successfully identified all relevant instances while maintaining a high rate of 
correct positive predictions. The resulting F1 score of 0.9333, which balances precision and recall, 
further validates the model's robustness and strong performance. 
The XGBoost model demonstrated consistent performance, with a training accuracy of 80.00% 
and a testing accuracy of 77.78%. Its balanced precision and recall, both at 0.8571, imply that the 
model is effective at identifying positive instances while maintaining a moderate rate of false 
positives. The F1 score of 0.8571 reflects this balance, making XGBoost a reliable model, though 
it does not reach the same level of accuracy or F1 score as the Neural Network. This consistency 
suggests that while XGBoost captures some complexity in the data, it is not as effective as the 
Neural Network. 
The Stacking Model, which combines multiple base learners, achieved a training accuracy of 
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82.86%, but saw a slight decrease in testing accuracy of 77.78%. The precision of 0.6049 
indicates a higher rate of false positives compared to the other models. While the recall of 0.7778 
is comparable to the testing accuracy, it shows that the model identifies positive instances 
reasonably well but struggles with precision. The F1 score of 0.6806 reflects these challenges 
and suggests that the Stacking Model may require further tuning or different base learners to 
improve its precision and overall performance. 
Comparatively, the Neural Network stands out as the most effective model in this study, as 
evidenced by its highest training and testing accuracies, perfect recall, and the highest F1 score. 
This model's performance indicates that it can generalize well from training data to unseen data 
without overfitting as the difference between its training and testing accuracy is minimal. Although 
XGBoost performs consistently, with balanced precision and recall, it does not reach the same 
level of accuracy or F1 score as the Neural Network. Its lower training and testing accuracies 
suggest it might not capture the complexity of the data as effectively as the Neural Network. 
The Stacking Model, while incorporating multiple learners, shows promise with its intermediate 
training accuracy but requires further optimization. The lower precision and F1 score indicate that 
it needs improvement in managing false positives. The observed overfitting, where the training 
accuracy exceeds the testing accuracy by a notable margin, suggests that the model could benefit 
from additional tuning to enhance its generalization capabilities. 
It is important to note that our models were trained on a relatively small dataset. To strengthen 
our models and improve their performance, we plan to gather additional data in future research. 
This will help address issues of overfitting and underfitting, thereby enhancing the overall 
accuracy and robustness of our models. 
Additionally, to better understand the relationships and potential collinearities among the features 
used in our models, we have provided a correlation matrix below. This matrix helps in identifying 
which features have strong linear relationships and can inform feature selection and engineering 
efforts in future iterations of this work. 
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Fig. 10 Correlation heatmap of various UAV indices and plant health. 

It is important to note that our models were trained on a relatively small dataset. To strengthen 
our models and improve their performances, we plan to gather additional data in future research. 
This will help address issues of overfitting and underfitting, thereby enhancing the overall 
accuracy and robustness of our models. 

Conclusion and Future Work 
In this study, we implemented a comprehensive machine learning pipeline to evaluate grapevine 
health using UAV-derived indices and hyperspectral features. The process began with vine 
detection and segmentation, combining object detection and segmentation models to accurately 
isolate vine pixels. This approach ensured precise analysis by extracting bounding boxes and 
masks for each vine, mapped with GPS data to associate real-world measurements. 
Three models, Neural Network, XGBoost, and a Stacking Model, were trained and validated using 
high-quality data. The Neural Network outperformed others, demonstrating strong generalization 
capabilities. XGBoost showed balanced performance, while the Stacking Model required further 
optimization. 
Future work will focus on improving the robustness of the Stacking Model, exploring other 
ensemble techniques, and leveraging larger datasets to further enhance predictive performance. 
By addressing these areas, we aim to develop even more accurate and reliable models for large-
scale vineyard health monitoring, enabling timely interventions and improving overall grapevine 
productivity. 
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