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Abstract.  
Aspergillus flavus and Aspergillus parasiticus hereafter referred to jointly as A. flavus, are soil 
fungi that infect and contaminate preharvest and postharvest peanuts with the carcinogenic 
secondary metabolite aflatoxin. A. flavus can cause extensive economic losses to peanut 
growers and shellers by contaminating peanut kernels with aflatoxins. In the southeastern U.S., 
contamination from aflatoxin continues to be a major threat to the peanut industry and climate 
variability along with the increased focus on consumer health and low aflatoxin thresholds may 
exacerbate the problem in the future. Industry-wide loss to aflatoxin in Georgia in 2019 was 
estimated at 24%, and the U.S. has all but lost the European peanut export market due to 
stringent aflatoxin thresholds. This project leverages a recently established interdisciplinary 
team of researchers, Extension professionals, and graduate students from three University of 
Georgia (UGA) colleges and partners with the USDA-ARS National Peanut Research 
Laboratory to address the aflatoxin problem in peanut. Based on a study conducted by Vellidis 
et al. in 2006, our hypothesis is that aflatoxin is spatially distributed within peanut fields and may 
be correlated with easily measurable field parameters. The goal of this project is to develop 
decision support tools (DSTs) that predict areas in the field in which aflatoxin hotspots are likely 
to occur in the three weeks prior to harvest. This paper provides an overview of the work 
completed through the second year of this multiyear project. 
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Introduction 
Mycotoxins are toxic secondary metabolites produced by fungi that are harmful to human and 
animal health. These compounds may contaminate foods and feeds, either in the field or 
postharvest, creating a major food safety risk. Because of their ability to cause illness or fatalities 
at very low concentrations (ppb or ppm), mycotoxin levels on foods and feeds are strictly regulated 
by food safety agencies around the world. The Food and Agriculture Organization of the United 
Nations has estimated that 25% of the world's crops are affected by mycotoxins each year, with 
losses of approximately 1 billion tons of food products annually (Schmale & Munkvold 2009). 
Without considering human health impacts, loss estimates attributed to mycotoxins in the in the 
US and Canada range between $0.5 and $5 billion/year (Schmale & Munkvold 2009). Global and 
regional increases in temperature and the increased focus on consumer health and low mycotoxin 
tolerances will exacerbate the mycotoxin problem in the future. 
The primary mycotoxin issue in the state of Georgia, USA, is aflatoxin contamination of peanut 
(Arachis hypogea L). Aflatoxin is a carcinogenic secondary metabolite produced by the soil fungi 
Aspergillus flavus and Aspergillus parasiticus hereafter referred to jointly as A. flavus. The fungi 
infect and contaminate preharvest and postharvest peanuts with aflatoxin. The peanut industry-
wide loss to aflatoxin in Georgia was estimated at 24% in 2019, and one peanut shelling company, 
Premium Peanut LLC, reported their losses to aflatoxin at $150 million that year. Aflatoxin 
tolerances are particularly low in the EU, and loss of the European market to countries such as 
Argentina and China, which produce peanuts with lower aflatoxin risk, is a real threat. In the U.S., 
peanuts are grown primarily in the southeastern states. Georgia produced 52% of the U.S. peanut 
crop or 0.66 million Mg on 275,200 ha in 2022 (Georgia Peanut Commission 2022). 
Consequently, the potential socio-economic implications of aflatoxin contamination to Georgia 
and the southeastern U.S. are grave. 

Spatial Distribution of Aflatoxin Contamination 
Despite the ubiquitous presence of A. flavus in soil, extensive invasion by these fungi and 
contamination of the peanut crop with aflatoxin in the field occurs primarily when the plant is 
subjected to drought stress and high soil temperatures (Hill et al. 1983; Sanders et al. 1985; 
Clevenger et al. 2016). Peanuts grown under drought stress may also be predisposed to 
subsequent aflatoxin contamination during harvest, handling, and storage.  
Previous work also showed that soil type and crop rotation affect colonization of peanut kernels 
by A. flavus (Griffin and Garren 1974; Abbas et al. 2004) and that populations of the fungus in soil 
exhibit a moderate degree of spatial structure (Abbas et al. 2004). Vellidis et al. (2007) found that 
aflatoxin contamination was spatially aggregated within a rainfed peanut field. In that study, 
aflatoxin levels measured on peanut kernels sampled systematically throughout the field were 
used to create an interpolated map of the aflatoxin distribution in the field, which showed several 
areas with high concentrations or “hotspots” (Fig. 1a). Maps of normalized difference vegetation 
index (NDVI) (Fig. 1b) and apparent soil electrical conductivity (ECa) (Fig. 1c) of the field were 
also developed. NDVI is an indicator of plant biomass and was assessed with a tractor-mounted 
multispectral sensor. ECa is a surrogate for soil texture with low ECa values indicating sandy soils 
and high ECa values indicating soils with higher clay content. Geostatistical analysis indicated 
spatial correlation among aflatoxin concentration, NDVI, and ECa. Generally, higher levels of 
aflatoxin were observed in areas with lower ECa and lower NDVI. This indicates that aflatoxin is 
more prevalent in areas that may have experienced physiological water stress due to the lower 
water-holding capacity and the drought-prone characteristic of sandier soils. Thus, the study by 
Vellidis et al. (2007) documented that aflatoxin is spatially clustered within peanut fields and may 
be correlated with easily measurable field parameters.  
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Fig 1. Aflatoxin concentration map from data collected in a 14-ha peanut field in Tift Co., GA in 2006 (a); NDVI map from a 
Crop Circle reflectance sensor (b); and soil ECa map created with a Veris 3100 EC mapper (c). Blues and orange/red 

indicate higher clay and sand content, respectively (Vellidis et al., 2007). 

In the 15 years since the study by Vellidis et al. (2007), the tools available to collect spatially 
explicit data and to develop predictive models have improved dramatically. For example, 
unmanned aerial vehicles (UAVs) equipped with high-resolution sensors allow development of 
highly detailed maps of crop response in real time as well as accurate maps of the micro-relief of 
the terrain. Miniaturization of weather stations and wireless soil moisture sensing networks 
facilitate measurement of in-field microclimate and detailed mapping of soil moisture variability. 
Machine learning tools enable us to use large environmental data sets to develop predictive 
models whose performance improves as more data are added.  
The goal of this project is to develop decision support tools (DSTs) that create aflatoxin risk maps 
in rainfed peanut fields. The maps may then be used by peanut growers to differentially harvest 
peanut fields to prevent cross-contamination from areas in the field in which aflatoxin may be 
present. 

Materials and Methods 
During the 2022 and 2023 growing seasons, three grower-managed rainfed peanut fields were 
selected for the study. The fields were in the Coastal Plain region of Georgia where most of the 
state’s peanut production occurs.  

Physical and Environmental Measurements 
Soil apparent electrical conductivity (ECa) was collected in all fields using a Veris 3100 (Veris 
Technologies - Salina, KS) instrument with RTK guidance. Data were collected continuously in 9 
m parallel swaths. In the configuration used, the Veris 3100 instrument collected integrated values 
of soil ECa for 0-0.3m and 0-0.9m. Soil ECa and elevation data were then used in the 
Management Zone Analyst (MZA) software (Fridgen et al. 2004) to create soil ECa and elevation-
based management zones (MZs) in the field. MZA uses fuzzy means clustering to group like 
values. The MZs were used to assess the size of the sampling grid that was overlain on each 
field. Based on the observed spatial variability, a 0.5 ha (1.2 ac) sampling grid was selected for 
all three fields in 2022 while a 0.4 ha (1 ac) sampling grid was selected for all three fields in 2023. 
The size of the cells was optimized to be small enough to capture the spatial variability of the 
fields but also to account for the labor needed to collect data. The center point of each grid cell 
served as the sampling location for physical and biological measurements in the fields.  A total of 
66 sampling locations were established in 2022 and 77 in 2023. Fig. 2 shows the soil ECa map 
of the 10.5 ha 2023C field in southwestern Georgia overlain with the 0.4 ha grid and numbered 
sampling locations at the center of each grid. 
Intact 90 cm soil cores were collected at the center point of each grid cell. Each core was divided 
into six 15 cm increments and each increment analyzed for texture), organic matter content (OM), 
pH, macronutrients (N, P, K, Ca, P) and micronutrients (Al).  
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Fig 2. Soil ECa map of the 10.5 ha 2023C field in southwestern Georgia overlain with the 0.4 ha grid and numbered 
sampling locations at the center of each grid. 

University of Georgia Smart Sensor Array (UGA SSA) soil moisture sensor nodes (Vellidis et al., 
2008; 2013) were installed in 40 of the 66 of the grid cell center points in 2022 and 50 of the 77 
in 2023. Locations were selected to represent a wide range of measured ECa. The UGA SSA 
measures soil moisture in terms of soil water tension (the absolute value of soil matric potential). 
Each UGA SSA node measures soil water tension (SWT) hourly at three depths (10, 20, 40 cm) 
and soil temperature hourly at 5 and 10 cm. The UGA SSA nodes were used to measure SWT 
for the entire growing season (Maktabi et al., 2024). 
Air temperature, precipitation, solar radiation, relative humidity, and wind speed among others 
were collected at 15 min intervals using an ATMOS 41W (METER Group, Inc., WA, USA) all-in-
one compact weather station. 

Physiological Measurements 
Beginning with 60 days after planting (DAP), one group of plant physiological data were collected 
biweekly at all the sampling locations in 2022 and 2023. These data consisted of stomatal 
conductance, transpiration, leaf vapor pressure, minimum and maximum fluorescence in light and 
dark, quantum efficiency in dark and light, leaf light absorptance, and in leaf area index (LAI) 
(Sysskind, 2024). During each sampling event, peanut plants were carefully evaluated for their 
phenological stage (emergence, flowering, pegging, beginning pod, beginning seed, seed 
maturity) (Sysskind, 2024).  
Beginning in 2023, a second group of plant physiological data were collected at approximately 
60% of the grid sampling points. As with the soil moisture sensor nodes, sampling locations were 
selected to represent a wide range of measured ECa. These data consisted of whole plant 
samples collected biweekly in all fields. Three whole peanut plants were collected and divided 
into leaves, stems, pods, and seeds. Leaf area was measured and then all plant components 
were oven dried to determine dry matter (Maktabi et al., 2024).  
Beginning with approximately 60 DAP, whole plant samples were collected for aflatoxin analyses 
from each sampling location during the biweekly sampling events. Peanut pods were detached 
from the plants and sent to a commercial laboratory. Aflatoxin concentrations were measured 
using the Enzyme-Linked Immunosorbent Assay (ELISA) method (Hidayat and Wulandari, 2021). 

Remotely Sensed Data 
Planet Explorer (Planet Labs, San Francisco, CA) makes available multispectral imagery of the 
earth’s surface at a spatial resolution of 3 m and temporal resolution of one day. This platform 
was used to download multispectral images of the study fields on or around the field sampling 
days. When cloud-free images were not available for the sampling day, images from ±2 days from 
the sampling date were used. These multispectral images reported reflectance data in four 
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wavebands: Blue (455-515 nm), Green (500-590 nm), Red (590-670 nm) and Near Infrared (780-
860 nm). The reflectance rasters were used to develop NDVI for each field for each sampling 
date. The NDVI values were in a 3 m raster that corresponded to the spatial resolution of the 
images. The rasters were used to extract NDVI values for each sampling area by creating a 6 m 
buffer around the grid cell center points and taking the arithmetic mean of all the raster NDVI 
values within the buffer (Kukal, 2024). 

Yield Data 
Yield data were collected beginning in 2023 by harvesting 30 m (100 ft) of one peanut bed (2 
rows), 15 m (50 ft) on each side of the sampling point, with a 2-row bagging combine. Two or 
three bags were collected at each sampling point. The bags were weighed in the field and samples 
of peanut pods were extracted from one bag for aflatoxin analysis, burrower bug damage 
assessment, moisture content, and foreign material content (Kukal, 2024). 

Decision Support Tools (DSTs) 
Two types of mathematical simulation approaches were evaluated for their potential to create 
aflatoxin risk maps. These were application of a machine learning technique and application of 
an established peanut crop growth model. 
Random Forest Regression with Recursive Feature Elimination  

The machine learning technique was a Random Forest regression model approach that used 
physical and environmental measurements (soil texture, meteorological parameters, soil water 
tension (SWT), soil temperature) and NDVI. The only physiological measurement used was 
aflatoxin concentration. The model was developed using the “randomForest” package in RStudio. 
Data from all three 2023 fields were pooled and split into 75% training and 25% testing sets. The 
model included a loop to iterate over 25250 combinations of values for the number of trees, 
number of variables split, and maximum number of nodes in a tree.  
A Random Forest regression model alone was not capable of subsetting important variables from 
the original predictor set that contribute to the skill of the model. Although the Random Forest 
modeling has the capability to recognize and delineate inter-variable collinearity by selecting a 
subset of the variables at each node-split in each tree, it was not able to not only identify the 
predictors that were actually adding to the variance explained in the aflatoxin concentration, but 
also eliminate predictors that were not adding any unique information to the model or, in cases, 
were a source of noise in the dataset. To do so, the Random Forest model was combined with a 
more-informed feature engineering approach called Recursive Feature Elimination (RFE). RFE 
was implemented using a “RecursiveFeatureElimination” function from a Python library called 
“feature_engine” (Kukal, 2024).  
The models developed were evaluated based on the R2 value obtained in each iteration and a 
three-fold cross validation was used to increase the robustness of the model. Using the mean R2 
value from the three-fold cross validation model as a baseline, certain variables were retained or 
dropped from the predictor set based on their contribution to the model R2 values relative to the 
baseline. Once the reduced predictor set was identified, these predictors were used in the 
Random Forest model to predict aflatoxin concentration. The predictions using the engineered 
set of predictors were compared against independent testing data to document model 
performance (Kukal, 2024).  
DSSAT-CROPGRO-Peanut 

The Decision Support System for Agrotechnology Transfer (DSSAT) is a universally used DST 
that includes dynamic crop growth simulation models for over 42 crops (Boote, 2019). DSSAT 
has been well calibrated for a variety of crops and cultivars, allowing the users to simulate the 
growth and development of the crop of interest under different management practice scenarios 
and environmental conditions. DSSAT-CROPGRO-Peanut is a model within DSSAT that has 
been used to predict peanut development and yield under various environmental and 
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management conditions (Hoogenboom et al., 2012). The model requires layer-wise soil data 
including physical and chemical properties and soil texture as well as daily weather data including 
maximum and minimum air temperature, solar radiation, relative humidity, and precipitation. 
DSSAT CROPGRO-Peanut-Aflatoxin developed by Boote (2018) has been used to predict 
aflatoxin production by associating it with model variables such as water stress occurrence during 
the water deficit sensitive periods such as pod filling (Maktabi, 2024).  
CROPGRO-Peanut-Aflatoxin was applied to the MZs of the 2023 fields to test the model’s ability 
to predict the spatial distribution of aflatoxin concentrations in rainfed peanut fields. The model 
was calibrated and evaluated using data from the 2023 fields (Maktabi et al., 2024). 

Results and Discussion 
Aflatoxin concentrations from the three 2023 fields were used for both modeling approaches. A 
total of 318 samples were collected and analyzed for aflatoxin concentrations from these fields. 
Overall, aflatoxin concentrations were low. Two hundred fifty-six (80.50%) of the samples were 
within the ELISA method’s quantitation range while 62 (19.5%) were below the method’s official 
detection limit (1.4 ppb) but still enumerated through the use of repetitively measured low 
standards. The mean concentration of the samples was 0.84 ppb, standard deviation was 0.75 
ppb and the maximum measured concentration was 3.5 ppb. 

Random Forest Regression with Recursive Feature Elimination  
The model was trained and tested using the pooled data from all three 2023 fields. The RFE 
approach reduced the relatively large number of variables to fewer, more robust predictors. The 
final set of variables in the order of their importance based on the change in R2 was %silt at 60-
75 cm of depth, vapor pressure deficit, %clay at 60-75 cm of depth, %sand at 60-75 cm of depth, 
%silt at 30-45 cm of depth, soil temperature, solar radiation, and air temperature. Using these 
eight predictors, resulted in improved model performance (R2 = 0.27 and RMSE = 0.65) compared 
to the original Random Forest model (R2 = 0.16 and RMSE = 0.74) (Kukal, 2024). Fig 3. Shows 
a scatter plot of observed and predicted values of aflatoxin concentration from the developed 
Random Forest model following RFE.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 3. Scatter plot of observed and predicted values of aflatoxin concentration from the developed Random Forest model 
following RFE (Kukal, 2024).  
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The final eight predictors consisted of weather variables, soil texture parameters and soil 
temperature. If soil temperature could be eliminated, then the model could be run without in-
season field measurements. To evaluate the performance of the model without soil temperature 
as a predictor, another model was developed. This model resulted in a R2 = 0.13 and RMSE of 
0.84 indicating that, as expected, soil temperature is a critical variable (Kukal, 2024). 
The Random Forest model with RFE explained 27% of aflatoxin concentration variance using 8 
variables some of which can be measured once for each field (soil texture) or easily measured 
during the growing season (meteorological data and soil temperature). This provides some 
promise that with further refinement with data from additional fields, this type of model may be 
able to predict aflatoxin occurrence at the field level with a reasonable degree of confidence 
(Kukal, 2024). At this point, the data requirements to train this type of model likely precludes it 
from being used to create within-field risk maps. It is better suited to larger-scale applications. 

DSSAT-CROPGRO-Peanut 
Fig. 4 shows the simulated versus observed values for aflatoxin content in the two MZs of Field 
2023C. Because measured aflatoxin values were low, differences between MZs are not visually 
noticeable because of the scale of the y-axis. Nevertheless, the spatial distribution of aflatoxin 
across different zones occurred and was influenced by variations in soil texture and the resulting 
differences in water and heat stress levels. DSSAT simulations also showed different aflatoxin 
concentrations between MZs. For field 2023C, DSSAT predicted that the MZ consisting primarily 
of loamy sand resulted in higher season-end aflatoxin concentrations. However, the magnitude 
of the predicted aflatoxin concentrations was much higher than measured in the field indicating 
that the aflatoxin module requires additional calibration with more years of data (Maktabi et al., 
2024). Simulated aflatoxin concentrations in MZs increasingly diverged as harvest approached 
indicating that DSSAT may be a useful tool in creating aflatoxin risk maps. The model will be 
further calibrated from data collected in three additional grower-managed rainfed fields in 2024. 
 

 
 

Fig 4. DSSAT-simulated and measured aflatoxin concentrations (ppb) in two zones of Field 2023C (Maktabi et al., 2024). 
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