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Abstract 
Maize requires more nitrogen (N) fertilizer than other row-crops and optimized application rate 
and timing are critical components of farm profitability. Three-split strategies can help maintain 
yields with smaller total fertilizer amounts when the applied rates match the crop requirements. 
However, site-specific needs are difficult to predict because of complex interactions between the 
genetic, management, and environmental production factors and scouting is needed to monitor 
crop N status. While leaf sampling is increasingly used to ground-reference mid-season maize 
N status, the cost of tissue analysis and lack of guidelines that define where to sample create 
practical and economic barriers to adoption. Yet, proper characterization of in-field dynamics is 
needed to infer the optimum sampling strategy and the needed information may be collected 
using inexpensive small unmanned aerial systems (sUAS) equipped with red, green, blue 
(RGB) cameras. Previous research demonstrated that the difference between field canopy 
greenness and that of a high-N reference can be used to predict yield loss from N deficiency 
and determine the optimize pre-tassel N fertilizer. Canopy greenness is quantified using the 
dark green color index (DGCI) and characterized from sUAS RGB images collected between 
the eight expanded (V8) growth stage and tasseling (VT). Calibration equations were developed 
to compare the field and high-N DGCI values and predict relative grain yield loss from yield-
limiting N deficiency. Integration of these findings into a decision-support tool would allow maize 
producers to fine-tune the current N fertilizer rate recommendations to site-specific crop needs 
and promote the adoption of optimized practices. The objective of this study was to create a 
web-tool that automates image processing to assess mid-season maize N status and determine 
whether additional N should be applied to prevent loss from yield-limiting deficiencies. A high-N 
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reference was established in a N-deficient field trial to generate a test dataset used to support 
web-tool development. An algorithm was developed to automate image processing and 
characterize mid-season maize N status and pre-tassel N fertilizer needs from overheard sUAS 
RGB images. The created algorithm was integrated into a user-friendly web-tool interface. 
Further research is being conducted to identify the agronomic and economic optimum pre-tassel 
N fertilizer rates from the predicted relative grain yield information, facilitate high-N reference 
delineation, and ultimately replace the physical high-N reference with a virtual reference. 
Findings will be included as new web-tool prototype functionalities, and the final product will be 
available for public use by 2027.  
 
Keywords: Aerial Imagery; Automation; Dark Green Color Index; Remote Sensing; Web-tool 

Introduction 
Maize (Zea mays L.) is a staple crop that requires a large amount of nitrogen (N) per unit area to 
reach its potential. Therefore, the purchase of N fertilizer accounts for a significant portion of farm 
expenses and optimized soil N management is a critical component of profitability in maize 
production systems (Setiyono, et al., 2011). The N fertilizer application rates and timings should 
match the crop needs to minimize losses and different recommendations are used among regions 
to account for variations in genotypes, production environments, and management practices 
(Olfs, et al., 2005). In Arkansas, the recommended rates are determined according to soil texture 
and yield goal (Slaton, et al., 2014). Approximately 75% to 85% of the recommended rate is 
applied before the eight expanded leaves (V8) growth stage by means of a pre-planting and 
sidedress applications to support the crop vegetative growth and ear development (Dos Santos 
et al., 2021). The remaining 15-25% of N fertilizer is applied pre-tassel to complement the soil N 
supply and minimize the incidence of yield-limiting N deficiencies during the most critical 
reproductive stages. Yet, the exact amount of pre-tassel N fertilizer needed to optimize crop 
development depends on the initial soil supply, weather, and site-specific plant uptake dynamics. 
Three-split strategies tend to be more beneficial when unfavorable weather conditions increase 
early-season losses from leaching, runoff, denitrification, or volatilization (Davies et al., 2020), 
and greater N use efficiency could be achieved if the pre-tassel N fertilizer amounts were adjusted 
to field conditions within the growing season rather than based on soil texture and yield goals 
alone (Vanotti and Bundy, 1994a). 
While pre-tassel maize N status and fertilizer needs are expected to vary with spatial changes in 
field conditions and management history, site-specific requirements are difficult to predict 
because of the number and complexity of production factors at play (Wang, 2021). Yield goal-
based approaches tend to overestimate N fertilizer requirements and mid-season assessment of 
crop N status is an essential aspect of optimized soil fertility management (Vanotti and Bundy, 
1994b). Dos Santos et al. (2021) found that a pre-tassel N fertilizer application should be 
considered when leaf N concentrations less than 3.0% are observed before tasseling, and mid-
season leaf tissue sampling is recommended to diagnose and address yield-limiting N 
deficiencies in maize (Blackmer and  Schepers, 1994). However, the cost of tissue analysis and 
labor remains prohibitive and only scarce information is available to help producers determine 
where and when the tissue samples should be collected. These economic and practical barriers 
to tissue sampling hinder the producers’ ability to collect relevant ground-reference information 
for optimized strategic and operational decision-making. Fortunately, recent advances in sensor 
technology have provided new tools that can be used to map spatial changes in crop development 
and determine the preferred leaf tissue sampling resolution and locations (Ruiz Diaz et al., 2008). 
Development of a tool that correlates sensor data with site-specific yield-limiting N stress could 
be used to maximize scouting efficiency and facilitate the implementation of optimized practices 
(Ma and Biswas, 2015). Different approaches to the development of data-driven 
recommendations for real-time and prescription-based N fertilizer rate selection have been 
investigated in published literature (Reimer et al., 2020). 
Real-time and prescription-based data-driven N fertilizer management in maize uses proximal 
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sensing, computer vision, or spectral imaging to characterize field conditions and fine-tune the 
operational parameters (Pawase, et al., 2023). The most widely adopted systems use 
multispectral non-imaging sensors mounted on farm machinery to collect crop radiometric 
reflectance data in the green, red, red-edge, and near-infrared sections of the electromagnetic 
spectrum (Bausch and Delgado, 2004). The sensor data are georeferenced and collected on-the-
go. Vegetation indices such as the normalized difference vegetation index (NDVI) and its 
derivatives may be used to assess spatial changes in crop health and inform management (Burns, 
et al., 2022; Maresma et al., 2016). The higher the NDVI and NDVI-derived values, the healthier 
the crop and comparison of the field values to that of a high-N reference allows for site-specific 
evaluation of crop N status and fertilizer need requirements (Pettorelli, 2013). At first, the operator 
would manually determine the fertilizer rate given the ratio between the field and high-N reference 
values. Today, the normalization of machine learning, artificial intelligence, and computer vision 
provides opportunities for more autonomous systems with automated N fertilizer rate selection 
capabilities (Thompson, et al., 2015). Data processing and N fertilizer rate adjustments are 
performed simultaneously and in real-time during the operation providing that the equipment is 
equipped with variable-rate fertilization and on-the-go crop monitoring capabilities. Other widely 
adopted systems use multispectral aerial and satellite images to map in-field changes in crop 
health prior to the operation (Nawar et al., 2017). The created maps are then used together with 
geographic information system-based precision agriculture software to generate a N fertilizer 
prescription that can be implemented into available technology. A high-N reference is still needed 
to calibrate the N fertilizer prescription. A high-N reference may be established physically in the 
field, or virtually determined by looking at the mathematical distribution of pixel radiometric values 
within the collected images (Thompson and Puntel, 2020). 
While numerous systems have been developed to support sensor-based N fertilizer rate selection, 
the technology acquisition cost and need for more effective data-driven software calibration 
procedures create economic and technical barriers to adoption (Al-Gaadi, et al., 2023). Moreover, 
not all producers feel comfortable relying on a semi-autonomous system for N fertilizer rate 
selection. Development of decision-support systems that use inexpensive technology to help 
inform N fertilizer in cropping systems with intermediate technological capabilities and experience 
is still needed (Colaço and Bramley, 2018). N is required for chlorophyll synthesis and strong 
correlations exist between leaf N concentration and canopy greenness. Previous research 
quantified canopy greenness using the dark green color index (DGCI; Karcher and Richardson, 
2003) computed from red, green, blue (RGB) images collected using inexpensive small 
unmanned aerial systems (sUAS). Calibration equations were established to relate pre-tassel 
field DGCI values to mid-season crop N status (Purcell et al., 2013; Purcell et al., 2015). 
Comparison between the field DGCI values to that of a high-N reference allowed for estimation 
of relative grain yield (RGY) loss from N deficiency independently from lighting conditions at the 
time of flight (Dos Santos et al., 2020). Pre-tassel N fertilizer application should be considered if 
more than a specific RGY loss threshold – typically 5% – is expected. Implementation of these 
equations into a web-tool would help producers optimize their N fertilizer strategy independently 
from their technological capabilities. The created decision-support system would complement the 
other solutions found in literature because it would only require the use of RGB cameras that 
come standard on the least expensive sUAS to inform the producers’ management decisions. 
Moreover, no stitching would be required to allow for use on the turnrow without the need for 
advanced data processing software and experience. The web-tool would not be used to automate 
fertilizer rate selection throughout the season. Instead, it would be used to assess crop response 
to the producers’ preferred management strategy and inform ground-referencing needs to help 
fine-tune pre-tassel N fertilizer rate selection to site-specific crop needs, with or without access to 
variable-rate fertilization. The objective of this study was to create a web-tool that generates pre-
tassel maize N fertilization recommendations from RGB images collected using inexpensive small 
unmanned aerial systems (sUAS).  
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Material and Methods 

Sample Dataset 
A high-N reference was established in a 2-ha N-deficient production maize field at the Pine Tree 
Research Station, Arkansas (latitude = 35.134806°, longitude = -90.937161°). The field was 
managed using the University of Arkansas System Division of Agriculture recommendations 
(Arkansas Cooperative Extension Services, 2008), except for N fertilization. The recommended 
total N fertilizer rate was 250 kg N ha-1 and only 125 kg N ha-1 were applied to create visible 
symptoms of stress. The total N fertilizer amount was delivered in two split-applications with 
90 kg N ha-1 applied at planting, and 35 kg N ha-1 applied at the six expanded leaves (V6) growth 
stage for sidedress. In the middle of the field, an additional 145 kg N ha-1 were applied at sidedress 
to create a high-N reference strip. The total N fertilizer amount applied in the high-N reference 
strip was 10% higher than the total recommended amount to maximize the likelihood of N 
sufficiency independently from weather conditions. The high-N reference strip was 45-m wide and 
created parallel to the maximum direction of elongation of the field. Overhead RGB images were 
captured at the eight, ten, and eleven expanded leaves (V8, V10, and V11) growth stages using 
a DJI Mavic Air 2 (DJI, Nanshan, Shenzen, China) sUAS. Flight altitude was 75 m above ground 
level. The images that captured both the N-deficient field conditions and high-N reference were 
used as sample dataset to facilitate algorithm development. 

Automation Steps  
Images are processed individually. First, the high-N reference is delineated by the user using a 
semi-automatic Python (Python Software Foundation, 2022) routine. The delineated high-N area 
is automatically cropped out of the original image and stored in a separate variable. A reset option 
was included to allow the user to start over if needed. Then, a function was created to convert the 
image RGB values into DGCI using equation 1 (Karcher and Richardson, 2003): 

 𝐷𝐺𝐶𝐼  =  
! # $%
$%  " ($ % &) " ($ % ()

)
 (1) 

 
where DGCI is the computed DGCI value, H, S, and B are the hue, saturation, and brightness 
values calculated using equations (2) to (6): 
 

 If max(R,G,B) = R: 𝐻  =  60 ⋅ * % +
,-.(/,*,+) % ,12(/,*,+)

 (2) 

 If max(R,G,B) = G: 𝐻  =  60 ⋅ +2  +   + % /
,-.(/,*,+) % ,12(/,*,+)

. (3) 

 If max(R,G,B) = B: 𝐻  =  60 ⋅ +4  +   / % *
,-.(/,*,+,) % ,12(/,*,+)

. (4) 

 𝑆  =  ,-.(/,*,+) % ,12(/,*,+)
,-.(/,*,+)

  (5) 

 𝐵  =  max(𝑅, 𝐺, 𝐵) (6) 

where R, G, and B are the image red, green, and blue pixel digital numbers. Equations 1 to 7 
were applied to each pixel in the original overhead images and delineated high-N reference area. 
The computed DGCI values quantify canopy greenness. Then, a function was created to convert 
the DGCI values to RGY using equation 7 (Dos Santos et al., 2020): 
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$ " 3  %.'( ) *+.$⋅-./0 ) *1.2⋅-./0345
 (7) 

where RGY is the computed RGY values, DGCI is the DGCI value from the original overhead 
image, and DGCIref is the median high-N DGCI value computed for the cropped image. Equation 7 
was applied to each DGCI value computed from the original overhead image. The computed RGY 
values range from 0 to 100% and predict yield given crop N status. If RGY ranges from 95% to 
100%, less than 5% yield loss is expected from N deficiency and the crop is considered N-
sufficient. If RGY is less than 95%, more than 5% yield loss is expected from N deficiency and 
the crop is considered N-deficient. The lower the RGY value, the greater the predicted yield loss 
and the more N-deficient the crop. A N status function was created to classify the RGY data 
according to their N status (e.g., sufficient versus deficient). 
The original sUAS overhead images and corresponding user-delineated high-N references are 
inputted into the DGCI function. A parameter was added to allow the user to choose to exclude 
non-canopy pixels – defined by max(R,G,B) ≠ G -  from the analysis. A second parameter allows 
the user to re-scale images at coarser spatial resolutions to minimize high-frequency noise. The 
dimensions of the re-scaled images are determined by the original dimensions multiplied by a 
scaling factor ranging from 0.05 to 1.00. For instance, if an image with 256 x 192 pixels is 
resampled using a scaling factor of 0.5, the dimensions of the re-scaled image are 256*0.5 = 128 
pixel wide, and 192*0.5 = 96 pixel tall. The overhead DGCI images and the high-N DGCI areas 
generated by the DGCI function are imputed into the RGY function. The output from the RGY 
function is inputted into the N status function. A main function was created to execute the DGCI, 
RGY, and N functions as one. All computations were performed using the image_utilities, python-
opencv (Bradski, 2000), matplotlib (Hunter, 2007), numpy (Harris, et al., 2020), and utm Python 
packages. The process was further automated by creating a rudimentary software package 
executable through command line.  

Algorithm Integration with a User Interface  
The created Python package was integrated into a web-tool user interface using R Shiny (R Core 
Team, 2024; Chang, et al., 2024) and the following R packages: base64enc (Urbanek, 2015), 
imager (Barthelme, 2024), reticulate (Ushey and Tang, 2024), DT (Xie and Tan, 2024), 
future.apply (Bengtsson, 2021), magick (Ooms), shinydashboard (Chang and Borges Ribeiro, 
2021), shinyjs (Attali, 2021), shinywidgets (Perrier, et al., 2024), terra (Hijmans, 2024), and 
tidyverse (Wickham, et al., 2019). The web-tool prototype was designed so that the user 
completes each data processing step in order. First, the user is prompted to upload RGB sUAS 
images featuring both field conditions and a high-N reference. Duplicate images are automatically 
excluded. No stitching is required to allow use on the turnrow without advanced computing 
capabilities and experience. The user cannot move forward until at least one image is uploaded. 
The user is also given the option to delete images that were imported by mistake, or reset the 
web-tool (e.g., reload the webpage). Then, the user is prompted to delineate the high-N reference 
in each uploaded image before being able to execute the created python algorithm. If multiple 
high-N references are selected for any one image, only the most recent one is processed. By 
default, non-canopy pixels are excluded from the analysis, 95% RGY threshold is used to 
characterize crop N status, and the uploaded images are not re-scaled. However, the user may 
choose to change these parameters at any stage of the process and re-process images providing 
all other requirements have been met.  

Results 
Step-by-step demonstration of the created web-tool prototype is provided in figures 1 to 9. First, 
the user is prompted to browse one or multiple images from their device (figures 1 and 2). The 
selected images are uploaded into the created interface and displayed in a table (figure 3). New 
images may be browsed, selected, and added by repeating the steps illustrated in figures 1 and 2. 



Proceedings of the 16th International Conference on Precision Agriculture 
21-24 July, 2024, Manhattan, Kansas, United States  

6 

Duplicates are automatically excluded based on image path and name. Uploaded image size can 
be adjusted to accommodate device screen size or resolution, and personal preferences 
(figure 4). Uploaded images may also be selected and removed as needed. Next, a high-N 
reference must be delineated in each image to allow for data processing. A sidebar menu and 
toolbar allow the user to navigate between images and draw within an image (figure 5). The 
images that still require a high-N reference are listed in the sidebar menu (figure 6). Once a high-
N reference has been identified within all images, the user may proceed with data processing and 
analysis (figure 7). A pop-up window reminds the user to define a high-N reference in all images 
if at least one is missing. 
Image processing is fully automated providing that the user uploads at least one image and 
identify a high-N reference area within each image. Canopy greenness quantified using the DGCI, 
the associated RGY prediction, and maize N status outputs are displayed within their respective 
tabs (figures 7 and 8). The user may change the image processing parameters (e.g., non-canopy 
pixel exclusion, RGY threshold, and re-sampling) and re-process the images as needed. 
Demonstration of the re-scaling functionality is provided in figure 9. The images used for 
illustration in this proceeding were collected at the ten expanded leaves (V10) growth stage. 
 
 
 
 

 
Figure 1. User interface of the created web-tool prototype. The Upload Drone Images menu is displayed by default. Users 

must upload overhead images before proceeding to the next step. 
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Figure 2. Browsing window requesting the user to find and select individual red, green, blue overhead images for upload 
into the web-tool prototype. Multiple images may be selected at once. Additional images may be added later by repeating 

the same steps. Duplicates are automatically excluded based on file path and name. 

 

 
Figure 3. Uploaded red, green, blue overhead images are displayed in the web-tool user interface. 
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Figure 4. Overhead image manipulation. The user may change image display size, select (highlighted in blue) and remove 

one or more images, or refresh the page. The user may also upload a set of sample images for practice. If all uploaded 
images are removed at once the web-tool is refreshed and all parameters are reset to their default settings.  

 

Figure 5. High-nitrogen delineation process completed within the Delineate References menu. The user may use the Start, 
Pause, and Reset (do-over) tools as needed to delineate the reference area within each image. The delineated area appears 

as a white polygon overlayed over the selected image. The High-Nitrogen Reference button completes the process.  
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Figure 6. Completion of the high-nitrogen reference delineation. The pixels outside the delineated area are blacked out. 

The user may then select or move to another image using the tools provided in the sidebar menu. A high-nitrogen 
reference must be selected in each image before the user can proceed with processing. 

 
Figure 7. Overhead image processing. The user clicks on Analyze Images/Update to process the uploaded images. Results 
are displayed within a set of relevant tabs. The relative grain yield predictions are shown by default. Algorithm outputs are 

displayed side-by-side with their corresponding red, green, blue overhead images. 
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Figure 8. Mid-season maize nitrogen status assessment. The user may move between tabs without re-processing images. 

 

 
Figure 9. Processed image manipulation. The user may adjust the image display size to different screen sizes or 

resolutions. The user may also choose whether to exclude non-canopy pixel from the data processing (excluded pixels are 
shown in white). The user may also change the relative grain yield threshold for yield limiting nitrogen deficiency detection 

(95% by default), and re-scale the image to a coarser spatial resolution to minimize noise. 
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Discussion  
A web-tool prototype was developed to help producers assess mid-season maize N status with 
overhead RGB images collected using inexpensive sUAS. No stitching is required to allow image 
processing on the turnrow without advanced data computing capabilities. The current web-tool 
prototype is still in development, and additional functionalities will be added before deployment in 
2027. The additional functionalities will increase user friendliness and relevance to promote 
widespread adoption. The following additions are currently in the pipeline: automation of the high-
N reference area delineation across images from coordinates or shapefile; delineation of a virtual 
high-N reference as a substitute from the establishment of a physical high-N reference at 
sidedress; determination of a mid-season agronomic and economic N fertilizer rate 
recommendation to optimize maize N fertilizer management; combination of the individual image 
outputs into a single product, and development of an algorithm that will identify the best tissue 
sampling locations for ground-truthing. 
In terms of development stack, Python and R were used to complete this project because of their 
popularity among the scientific community, modularity, capabilities, and interoperability. These 
made it possible for agronomists without formal computer science background to drive algorithm 
and web-tool development. It also provided flexibility for the addition of additional functionalities. 
Both programs also allow for rapid image processing and the development of a system that can 
be deployed and improved quickly with a small budget. In addition to the new functionalities listed 
above, future efforts will emphasize technology commercialization and on-farm validation.  

Conclusions 
 
The following conclusions can be drawn from this study: 

• Overhead RGB images collected using inexpensive sUAS can be used to inform ground-
scouting efforts and optimize maize production independently from the producers’ 
technological capabilities. 

• Automation and decision-support tool development was used to bring research findings 
back to the farm and promote optimized N fertilizer management through precision 
agriculture. 

• Development-stack selection was carefully considered to allow for continued web-tool 
development along with ongoing research efforts.  

• The created workflow provides a proof-of-concept that may be applied to other similar 
applications. 
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