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Abstract.  
The western USA has been in severe drought for the last 20 years. Yet in urban areas in Utah 
irrigated turfgrass lawns are the norm. The EPA has estimated that about 50% of residential 
turfgrass irrigation is wasted through spatial and temporal mis-applications. Valve in head 
sprinkler heads allow different amounts of water to be applied by each sprinkler head so that each 
head is essentially an individual sprinkler zone. However, for this to work effectively, custom soil 
moisture zones need to be identified for each site. For precision irrigation of traditional crops it 
has been suggested that irrigation zones should be frequently reassessed. However, with 
turfgrass there is no crop to offset the cost of frequent sensing and re-mapping so static irrigation 
zones are desirable. This study involves spatio-temporal analysis of soil moisture and remotely 
sensed data to try and determine areas of two large sports fields that behave consistently in space 
and time and those that are changeable temporally. Spatial fields surveys (2-5 a year) of the two 
large sports fields from a 4-year period are investigated along with National Agricultural Imagery 
Program (NAIP) aerial imagery from 2006-2021. Principal components analysis is used to 
determine similarities and differences in the behavior of the soil moisture and NAIP imagery. 
Determining the areas that behave consistently in time means that soil moisture can be managed 
using static irrigation zones based on those areas until economic ways of producing new zone 
maps before each irrigation event are developed.  
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Introduction 
The western USA has been experiencing severe drought conditions for at least the last 20 years 
(Williams et al. 2020). The population in many areas of the west, like Utah, has also increased 
greatly in this time putting greater strain on the limited freshwater supply (Derouin, 2017). While 
agriculture is generally the sector consuming the largest proportion of freshwater, conversion of 
agricultural land to urban areas with lawns, parks and playing fields may result in some reduction 
of water use, but the EPA have estimated that as much as 50% of residential turfgrass irrigation 
is wasted through spatial and temporal mis-applications (EPA, 2017). Temporal misapplications 
can be resolved by using smart sprinkler systems that take local weather conditions into 
consideration when determining irrigation timing (Serena et al., 2020). Valve in head sprinkler 
heads allow different amounts of water to be applied by each sprinkler head so that each head is 
essentially an individual sprinkler zone. Ideally, based on what has been learned from precision 
irrigation of arable crops, the soil moisture should be mapped/inferred between each irrigation 
event to create new temporally varying zone application maps (O’Shaughnessy et al., 2015) to 
work with the valve in head technology. With turfgrass no crop is sold to offset the cost of the 
spatial sensing or survey needed to make temporally varying zone maps. Unfortunately, the 
technology to economically create new irrigation zone application maps for each irrigation event 
for use with valve in head sprinkler heads for turfgrass is currently lacking. Kerry et al. (2023) 
investigated the potential for electrical conductivity (ECa) and drone data to characterize the 
spatial variability of soil moisture in turfgrass. They noted that due to extra permissions that are 
needed and no fly zones in urban areas, drone data was less useful for the potential mapping of 
temporally changing variable rate irrigation zones for urban turfgrass. They also found that due to 
many conductive features in the urban environment, mapping using ECa data is more labor 
intensive in urban rather than agricultural areas. They concluded that ECa data modelled the 
variation in soil moisture better than drone data, but that even if the EM38 were pulled behind a 
lawn mower whilst mowing, any semi-automated mapping resulting from the data would only be 
economical for high value sport’s fields like golf courses or football stadiums where there is 
income to pay for the sensor, repeated sensing and automated mapping.  
Based on the conclusions of the work of Kerry et al. (2023), this study takes a step back to look 
at static variable rate irrigation zones. If zones are to be static, then there is a need to identify 
which patterns in soil moisture are static in time and which vary temporally. The study involves 
spatio-temporal analysis of turfgrass health, soil moisture and remotely sensed data to try and 
determine areas of two large sports fields that behave consistently in space and time and those 
areas that are changeable temporally. Spatial fields surveys (2-5 a year) of the two large sports 
fields from a 4-year period are investigated along with National Agricultural Imagery Program 
(NAIP) aerial imagery from 2006-2021. Principal components analysis (PCA) is used to determine 
similarities and differences in the behavior of the soil moisture and turfgrass in space and time. 
Determining the areas that behave consistently in time means that one always knows something 
about the likely patterns of soil moisture and can manage it accordingly until economic ways of 
producing new zone maps before each irrigation are developed.  
 
Methods 
Field Sites 
The field sites for this study were two turfgrass fields on Brigham Young University campus in 
Provo, Utah, USA. The fields grow Kentucky blue grass and have the following dimensions and 
locations: Harmon field (150 m x 115 m) (40.256°N, 111.644°W), MTC field (200 m x 150 m) 
(40.262°N, 111.644°W). Slopes in the Harmon field range from 1-6% and in the MTC field they 
are 3-6%. Both fields have soils that have been partially engineered, but 
https://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx, shows that the native soils in 
the Harmon field were predominantly of the Taylorsville silty clay loam and for the MTC field they 
were Pleasant Grove gravelly loam soils before engineering.  

https://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx
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Harmon field had traditional sprinkler zones mostly aligned with changes in elevation (Figure 1a) 
and MTC field had valve in head sprinkler heads. Each sprinkler head forms its own zone covering 
a radius of 27 m (see red lines in Figure 1b). Sprinkler heads are spaced at 20 m so there is 
overlap in the area covered by different heads (see intersecting black circles in Figure 1b). 
 
(a) Harmon Field Elevation (m) (b) MTC Field 

  
 
Figure 1. Maps showing the Variation in Elevation, Sprinkler Heads (black dots), Sprinkler Zones 
(black lines) within (a) Harmon Field and (b) MTC Field 
 
The Harmon field was surveyed on 13 dates: Sept. 2020, March 2021, Aug. 2021a, Aug. 2021b, 
Sept. 2021a, Sept. 2021b, April 2022, May 2022, Oct. 2022, April 2023, May 2023, July 2023 and 
Sept. 2023 and the MTC field was samples on 9 dates: July 2021, Sept. 2021, April 2022, May 
2022, Oct. 2022, May 2023, June 2023, July 2023 and Sept. 2023. The Harmon and MTC fields 
were sampled on 15 m and 20 m grids, respectively (Figure 2). At each grid node in the field soil 
volumetric water content (VWC) was measured using a Delta T theta probe calibrated for loamy 
soils. Other observations made at each grid node were: normalized difference vegetation index 
(NDVI) measured using a Trimble Greenseeker, Wet-Dry indicator (WD) which was an indication 
of whether the grass felt dry (0), damp (0.5) or wet (1) to the touch and % Deadgrass (%DG) 
which was an estimate of the percentage of grass that was dead of discolored within a 0.5 m x 
0.5 m quadrat.   
 
(a) Harmon Field (b) MTC Field 
 

  
 
Figure 2. Maps showing Sampling Points (black dots) and Sensor Locations (red dots) in (a) 
Harmon Field and (b) MTC Field 
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Aerial Imagery 
NAIP Imagery (National Agricultural Imagery Program) are the result of surveys that are 
performed every 3 years. For Provo, Utah, where the field sites are located, the surveys are 
performed in August of each survey year. The NAIP imagery data are available free of charge 
and were downloaded from https://earthexplorer.usgs.gov/. The NAIP imagery pixel size (1 m) is 
much more suited to turfgrass study than other freely available imagery such as Landsat and 
Sentinel data where the pixels sizes (30 m and 10 m, respectively) are too large given the size of 
the fields. NAIP imagery was available for both fields from flights made in August 2006, 2009, 
2011, 2014, 2016, 2018 and 2021. The wavelengths measured were only RGB in 2006 and 2009, 
but NIR was also measured from 2011 onwards so the NDVI could be calculated. Shape files of 
the field boundaries were used to extract the imagery for only the extent of the fields of interest. 
The imagery data for each field were converted to digital numbers for analysis. As the northern 
part of the Harmon field was dug up in 2014, the 2014 data were excluded from the Harmon field 
NAIP PCA analysis. 
 
Statistical Analysis 
All soil survey data from both field sites were kriged to the same 1 m grid as the NAIP imagery 
using SpaceStat (Jacquez, 2014). A time series principal components analysis (PCA) was 
computed for the following datasets using SPSS (IBM, 2021): 

1. RGB, NIR and NDVI from NAIP Surveys for each tri-yearly survey 
2. VWC from all field surveys 
3. VWC and NDVI from all field surveys 
4. Wet-Dry indicator and % Deadgrass from all field surveys 

 
Principal component plots showing the loadings of each variable were investigated and the 
values of PCs 1 and 2 were mapped for each PCA. Pearson correlations of PC1s and PC2s 
from different PCA surveys with the NAIP PCs 1 and 2 were calculated. 
 
Results and Discussion 
Harmon Field 
Figure 3 shows the maps of VWC from each of the 13 surveys for the Harmon Field and Figure 4 
shows the images of NAIP imagery from each of the years for the Harmon Field. Correlation 
analysis showed that VWC from 9 of the surveys was correlated with VWC from other surveys 
with r = 0.54 to 0.77, however for the other four surveys correlations with the majority of the 
surveys was low r = -0.08 to 0.387. These correlations can be seen in patterns shown in the VWC 
maps from each survey (Figure 3). Most have distinct similarities and key features in common 
between surveys such as areas with low VWCs shown in blue that have been circled in black. For 
the NAIP imagery data, the different wavebands were moderately correlated (r = 0.28 to 0.52) 
with each other between some years such as 2006, 2009, 2011 and 2016, but correlations were 
weak for 2014, 2018 and 2021 (r = 0.02 to 0.20). Nevertheless, as with the VWC survey data, 
there are key features evident in the patterns of variation where the grass is less green that are 
consistent across some years which have been circled in red in Figure 4.    
 
Table 1 shows a summary of the PCA results using different time-series of data for the Harmon 
field. For each PCA apart from the VWC PCA, 6 PCs explain at least as much variation as one of 
the original variables, or one of the original surveys. For the VWC PCA, only three PCs accounted 
for as much variation as one of the original variables. For the NAIP imagery and the VWC, the 
first two PCs accounted for >60% of the variation in the dataset whereas for the VWC & NDVI 
and WD & DG PCAs the first two PCs only accounted for >40% of the variation in the dataset. 
This shows that more consistency can be summarized in the first two PCs for the NAIP imagery 
and the VWC data rather than the other two PCAs. The variables with the greatest and smallest 
loadings in terms of PC1 were green and NDVI for 2011 for the NAIP imagery PCA and were July 
and September 2023 for the VWC PCA. Figure 3 shows that these two months have the most 

https://earthexplorer.usgs.gov/
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different VWC patterns of all the Harmon VWC surveys. For the variables that are unrelated to 
PC1 in each PCA, the NIR for 2018 and 2021 stand out for the NAIP imagery and for the VWC & 
NDVI PCA, the NDVI measurements from March 2021 and April 2023 stand out. This is likely 
because the turfgrass may not have fully greened up following the winter dormancy period.   
 

Sept 2020 March 2021 Aug 2021a Sept 2021a 

    
Sept 2021b April 2022 May 2022 Oct 2022 

 
 

   
April 2023 May 2023 July 2023 Sept 2023 

    
 

 
Figure 3. Maps of Kriged VWC for Harmon field for Different Survey Dates (Red areas show 
wetness and blue areas show dryness) 
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2006 2009 2011 2014 

    
2016 2018 2021  

   

 

 
Figure 4. NAIP images for Harmon Field from Different Years 
 
 
Table 1. Summary of Time Series Principal Components Analyses for Harmon Field 
 
PCA Number of PCs 

meeting Kaiser’s 
Criterion 

% Variance 
Covered by PCs 
1 and 2 

Variables with 
highest and 
lowest PC 1 
loadings 

Variables 
unrelated to PC1 

NAIP imagery 6 60.07 Green 2011 
NDVI 2011 

NIR 2018 
NIR 2021 

VWC all surveys 3 63.56 July 2023 VWC 
Sept 2023 VWC 

None 

VWC and NDVI 
all surveys 

6 49.94 Sept 2021 VWC 
Sept 2023 VWC 

Mar. 2021 NDVI 
Apr. 2023 NDVI 

WD and % DG 
all surveys 

6 40.62 July 2023 DG 
Oct. 2022 WD 

Mar. 2021 WD 
Sep. 2020 DG 

NAIP = National Agricultural Imagery Program, VWC=Volumetric Water Content,  
NDVI = Normalized Difference Vegetation Index, WD = Wet/dry indicator, DG = % Deadgrass 
 
Figure 5 shows maps of PC1 and PC2 for each PCA. Some of the features that were circled in 
black and red in Figures 3 and 4 are evident in some of the PC plots and have been circled in 
black. Table 2 shows the correlations with NAIP PCs 1 and 2 for PCs 1 and 2 of PCAs for different 
variables. PCs1 from the VWC and VWC & NDVI PCAs have moderate negative correlations with 
PC1 from the NAIP imagery. In contrast, the DG & WD PC1 had a moderate positive correlation 
with NAIP PC1. The correlations between NAIP PCs 1 and 2 are far lower for other PCs. These 
results suggest that NAIP PC1 is identifying the main features of variation in grass health and 
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these correlate moderately with the main features in VWC, VWC & NDVI and DG & WD surveys. 
However, given that PCs1 and 2 account for >60% of the variation for the NAIP and VWC PCAs, 
the correlations suggest that time series NAIP imagery and time series VWC surveys are equally 
successful at identifying the key features of variation that are stable over time and that the NAIP 
imagery could be used to identify static, precise irrigation zones for the Harmon field at no cost 
for collecting the data.    
 

NAIP PC1 NAIP PC2 VWC PC1 VWC PC2 

    
VWC & NDVI PC1 VWC & NDVI PC2 WD & %DG PC1 WD & %DG PC2 

    
 
Figure 5. Plots of PCs 1 and 2 for different Principal Component Analyses in Harmon Field 
(Red:  positive values of PC1 and 2 and Blue: negative values of PC1 and 2) 
 
Table 2. Correlations with NAIP PCs 1 and 2 for Harmon Field 
 
Variable 1 Variable 2 r Variable 1 Variable 2 r Variable 1 Variable 2 r 

 
NAIP PC1 VWC PC1 -0.40 NAIP PC1 VWC & 

NDVI PC1 
-0.41 NAIP PC1 DG & WD 

PC1 
0.41 

NAIP PC1 VWC PC2 -0.13 NAIP PC1 VWC & 
NDVI PC2 

-0.01 NAIP PC1 DG & WD 
PC2 

0.18 

NAIP PC2 VWC PC1 -0.08 NAIP PC2 VWC & 
NDVI PC1 

-0.04 NAIP PC2 DG & WD 
PC1 

0.11 

NAIP PC2 VWC PC2 0.06 NAIP PC2 VWC & 
NDVI PC2 

0.14 NAIP PC2 DG & WD 
PC2 

0.19 

NAIP = National Agricultural Imagery Program, VWC=Volumetric Water Content,  
NDVI = Normalized Difference Vegetation Index, WD = Wet/dry indicator, DG = % Deadgrass 
PC = Principal Component 
 
MTC Field 
Figure 6 shows the maps of VWC from each of the 9 surveys for the MTC Field and Figure 7 
shows the images of NAIP imagery from each of the years for the MTC Field. Correlation analysis 
showed that VWC from two thirds of the surveys was moderately to strongly correlated with VWC 
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from other surveys with r = 0.30 to 0.81, however for the other surveys correlations between 
VWCs values was low r = -0.08 to 0.299. These correlations can be seen in patterns shown in the 
VWC maps from each survey (Figure 6). Most have distinct similarities and key features in 
common between surveys such as areas with high VWCs shown in red that have been circled in 
black at the center and northern end of the field (Figure 6). For the NAIP imagery data, the 
different wavebands were moderately to strongly correlated (r = 0.30 to 0.71) with each other 
between some years such as 2009, 2011, 2016, 2018 and 2021, but correlations were weaker for 
2006 and 2014 (r = 0.02 to 0.40). Nevertheless, as with the VWC survey data, there are key 
features evident in the patterns of variation where the grass is less green in the center of the field 
(see red circles in Figure 7) and darker green in the north of the field (see blue arrows in Figure 
7) that are consistent across some years. 
 

July 2021 Sept 2021 Apr 2022 

   
May 2022 Oct. 2022 May 2023 

 
 

  
June 2023 July 2023 Sept. 2023 

   
 

 
 
Figure 6. Maps of Kriged VWC for MTC field for Different Survey Dates (Red areas show 
wetness and blue areas show dryness) 
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2006 2009 2011 2014 

    
2016 2018 2021  

   

 

Figure 7. NAIP images for MTC Field from Different Years 
 
Table 3 shows a summary of the PCA results using different time-series of data for the MTC field. 
For each PCA, 4-9 PCs explain at least as much variation as one of the original variables, or one 
of the original surveys. For the NAIP imagery, VWC and WD & DG PCAs, the first two PCs 
accounted for >50% of the variation in the dataset whereas for the VWC & NDVI PCA the first two 
PCs only accounted for 42.93 % of the variation in the dataset. This shows that more consistency 
can be summarized in the first two PCs for the NAIP imagery, VWC and the WD & DG data rather 
than the VWC & NDVI PCA. The variables with the greatest and smallest loadings in terms of 
PC1 were blue and NDVI for 2018 for the NAIP imagery PCA and were October 2022 and May 
2023 for the VWC PCA. This suggests that these two months have the most different VWC 
patterns of all the MTC VWC surveys (see Figure 6). For the variables that are unrelated to PC1 
in each PCA, the NIR and blue for 2014 stand out for the NAIP imagery and for the VWC, VWC 
& NDVI and the WD & DG PCAs, May and June 2023 VWC and September and May 2023 DG 
stand out. This is likely because the maps for VWC of May and June 2023 are markedly different 
from the maps of other surveys with high values of VWC at the north end of the field being absent.   
 
Figure 8 shows plots of PC1 and PC2 for each PCA. Some of the features that were circled in 
black and red and pointed to with blue arrows in Figures 6 and 7 are evident in some of the PC 
plots and have been circled in black. Table 4 shows the correlations with NAIP PCs 1 and 2 for 
PCs 1 and 2 of PCAs for different variables. The correlations between NAIP PCs 1 and 2 are low 
with all other PCs (Table 4). This likely because the areas that are identified as having high VWCs 
in Figure 6 in the north and center of the field have darker and lighter colored green grass, 
respectively. This means that there are areas of the field where there is a positive correlation 
between VWC and NAIP imagery values and other areas of the field where there is a negative 
correlation which means that overall the correlations are weak. The center of the field corresponds 
to an area that is played on the most and is compacted with higher VWC near the surface. 
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Table 3. Summary of Time Series Principal Components Analyses for MTC Field 
 
PCA Number of PCs 

meeting Kaiser’s 
Criterion 

% Variance 
Covered by PCs 
1 and 2 

Variables with 
highest and 
lowest PC 1 
loadings 

Variables 
unrelated to PC1 

NAIP imagery 9 50.96 Blue 2018 
NDVI 2018 

NIR 2014 
Blue 2014 

VWC all surveys 5 50.81 Oct. 2022 VWC 
May 2023 VWC 

May 2023 VWC 

VWC and NDVI 
all surveys 

7 42.93 Oct. 2022 VWC 
Sept. 2021 NDVI 

June 2023 VWC 

WD and % DG 
all surveys 

4 52.55 Sept 2023 WD 
July 2023 DG 

Sept 2023 DG 
May 2023 DG 

NAIP = National Agricultural Imagery Program, VWC=Volumetric Water Content,  
NDVI = Normalized Difference Vegetation Index, WD = Wet/dry indicator, DG = % Deadgrass 
 
The area at the north end of the field, however, is a relatively flat area towards the top of a lesser, 
north-south running slope and therefore is wetter. Clearly, different processes are at work in both 
of these locations to make the soil wetter, hence the reverse correlations between VWC data and 
NAIP imagery in these two areas are evident. Despite the overall low correlations, Figure 8 shows 
that several key features (circled in black) that were prevalent in the soil and vegetation surveys 
have been identified in the NAIP imagery so it is still likely that it could be used to identify static 
irrigation zones for variable rate irrigation as areas which behave relatively consistently in time 
have been identified by the NAIP and other PCAs.    
 

NAIP PC1 NAIP PC2 VWC PC1 VWC PC2 

    
VWC+NDVI PC1 VWC+NDVI PC2 WD+%DG PC1 WD+%DG PC2 

   
 

 
 
Figure 8. Plots of PCs 1 and 2 for different Principal Component Analyses in MTC Field (Red:  
positive values of PC1 and 2 and Blue: negative values of PC1 and 2) 
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Table 4. Correlations with NAIP PCs 1 and 2 for MTC Field 
 
Variable 1 Variable 2 r Variable 1 Variable 2 r Variable 1 Variable 2 r 

 
NAIP PC1 VWC PC1 -0.04 NAIP PC1 VWC & 

NDVI PC1 
-0.11 NAIP PC1 DG & WD 

PC1 
0.23 

NAIP PC1 VWC PC2 0.15 NAIP PC1 VWC & 
NDVI PC2 

0.03 NAIP PC1 DG & WD 
PC2 

0.18 

NAIP PC2 VWC PC1 0.19 NAIP PC2 VWC & 
NDVI PC1 

0.20 NAIP PC2 DG & WD 
PC1 

0.11 

NAIP PC2 VWC PC2 -0.04 NAIP PC2 VWC & 
NDVI PC2 

0.06 NAIP PC2 DG & WD 
PC2 

-0.14 

NAIP = National Agricultural Imagery Program, VWC=Volumetric Water Content,  
NDVI = Normalized Difference Vegetation Index, WD = Wet/dry indicator, DG = % Deadgrass 
PC = Principal Component 

Conclusions  
PCA analysis for times series VWC surveys, VWC & NDVI surveys and WD & DG surveys showed 
similar results to PCA analysis of times series NAIP imagery wavebands. The field surveys, 
particularly the VWC survey and VWC & NDVI survey are labor intensive, but if a PCA of a times 
series of the freely available NAIP imagery can identify similar key features in PCs 1 and 2 or 
correlates at least moderately with the VWC PCA, then this suggests that a PCA of time series 
NAIP imagery is a valid approach to identifying areas that behave consistently in time and thus 
can identify static variable rate irrigation zones. The NAIP imagery proved useful at both field sites 
for identifying key patterns in soil moisture variation that are consistent in time, however, the two 
main, consistently wet areas, in the MTC field were wet for different reasons and thus the turfgrass 
response in the NAIP imagery was the opposite for these two wet patches. Future work will involve 
confirming this analysis using a Random Forest approach to both classification and also where 
PC 1 for the VWC times series of surveys is used as the dependent variable and the NAIP imagery 
reflectances for each waveband and year are used as the independent variables. This will confirm 
the predictability of the VWC patterns that are consistent in time using zones based on the NAIP 
imagery.  
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