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ABSTRACT 
 

The goal of accurately mapping soil variability preceded GPS-aided agriculture, 
and has been a challenging aspect of precision agriculture since its inception. 
Many studies have found the range of spatial dependence is shorter than the 
distances used in most grid sampling. Other studies have examined variability 
within government soil surveys and concluded that they have limited utility in 
many precision applications. Proximal soil sensing has long been envisioned as a 
method that would provide the full field coverage needed to accurately delineate 
soil productivity zones. Of the various sensing technologies, soil electrical 
conductivity (EC) sensing has seen the most widespread use, and adoption is 
increasing. The soil EC signal responds primarily to soil texture changes and in 
cases where salinity levels are elevated, it delineates those areas as well. While 
soil texture is an important factor in crop production, there are other factors to 
consider including organic matter, soil pH, and landscape position. A new suite of 
soil sensors that simultaneously measures these properties has been 
commercialized by Veris Technologies. To evaluate the accuracy of the sensors, a 
multi-state, multi-field study was conducted, and sensor readings were validated 
with lab-analyzed soil samples. Results show strong correlation between sensors 
and lab data, and overlaying sensor maps with soil surveys and 1 ha grid cells 
confirms the need for detailed soil mapping. 
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INTRODUCTION 
 
     U.S. federal funding for soil surveys began in the late 1800’s, and by the 
1980’s most of the main agricultural areas in the U.S. had been surveyed. The 
purpose of these surveys is to provide soil information to planners, engineers, 
builders, specialists in recreation, wildlife management, waste disposal, as well as 
to the agricultural community. 
 
 
 
 



     The properties relevant to agriculture delineated in these surveys soil include 
soil texture, organic matter (OM), cation-exchange capacity (CEC), soil pH, and 
soil depths. In most cases the range of these descriptions is fairly broad. For 
example, the soil properties in the top 35 cm for Drummer, the state soil of 
Illinois are listed as pH 5.6-7.8, organic matter 4.0-7.0, and CEC 24-35 (Natural 
Resources Conservation Service, 2001). Most surveys were completed at a 
1:15,840 to 1:24,000 scale, which did not identify areas smaller than 1-2.5 ha. 
Recently, USDA soil surveys have been digitized and most are available on-line. 
This improves access to the original maps, but with few exceptions, fields have 
not been re-surveyed since the advent of a global positioning systems (GPS) and 
other advanced precision agriculture technology. As a result, the level of 
quantitative soil property information, and geo-referenced mapping that could 
identify inclusions and provide precise line placement is not available from the 
USDA surveys. 
     Research has confirmed these limitations. For example, one study found that in 
a field with two major and two minor soils, the major soils were correctly 
identified by the soil survey in only 63% of the cases, while the two minor soils 
were correctly identified in less than 33% of the cases (Brevik et al., 2003). The 
USDA digital soil survey website offers this warning when most field scale 
surveys are downloaded: “You have zoomed in beyond the scale at which the soil 
map for this area is intended to be used…Enlargement of maps beyond the scale 
of mapping can cause misunderstanding of the detail of mapping and accuracy of 
soil line placement. The maps do not show the small areas of contrasting soils that 
could have been shown at a more detailed scale”.   
 (websoilsurvey.nrcs.usda.gov/app/WebSoilSurvey.aspx) 
      Proximal or on-the-go soil sensors using GPS have the capability of 
improving the delineation of soil boundaries (Adamchuk et al., 2004). The first 
proximal soil sensors were introduced in the 1990’s and are now being used in 
many crop production systems. The initial proximal soil sensor that was 
developed into a commercial mapping system was for mapping soil electrical 
conductivity (Lund, et al., 1998). Soil EC measurements correlate with soil 
properties that affect crop productivity, including soil texture, cation exchange 
capacity, drainage conditions, salinity and subsoil characteristics (Grisso et al., 
2009). 
     A soil pH sensor was commercialized nearly a decade ago (Adamchuk, et al., 
2005). Soil pH is an important factor in crop production. Nutrient usage, crop 
growth, legume nodulation, and herbicide activity are all affected by the pH of the 
soil (Logsdon et al., 2008). Numerous studies have shown that the range of spatial 
dependence for pH can be significantly shorter than typical grid-sampling 
distances (McBratney and Pringle, 1997), and variations of 2 pH units can occur 
over distances less than 12 m apart (Bianchini and Mallarino, 2002). Within many 
1 ha grids, there is a wide range of pH values, often ranging from soils that call 
for lime to soils that are already extremely high in pH (Brouder et al., 2005). 
     Recently, a proximal sensor for soil organic matter became commercially 
available (Lund and Maxton, 2011). Soil OM affects the chemical and physical 
properties of the soil and its overall health. It’s a key component of structure and 
porosity, affecting moisture holding capacity, the diversity and biological activity 
of soil organisms, and plant nutrient availability (Bot and Benites, 2005). 

http://websoilsurvey.nrcs.usda.gov/app/WebSoilSurvey.aspx


     Topography and landscape position frequently exerts a significant influence on 
soil properties and productivity, and can augment proximal soil sensing (Kitchen 
et al., 2003). With the advent of real-time-kinematic (RTK) and other high-grade 
GPS receivers, precise topographical measurements can be acquired 
simultaneously and co-located with proximal soil sensor readings. 
     Recently, a new multi-sensor platform was commercialized that records soil 
EC, OM, and pH from proximal sensors along with topography data. The 
objective of this study was to evaluate its performance on several fields in four 
mid-western states, comparing results with lab-analyzed samples and with soil 
surveys and grid sampling. 
 

MATERIALS AND METHODS 
 

Research sites 
 
     This research covered 347 ha on 8 fields in the states of Illinois, Iowa, Kansas 
and Nebraska having a wide range of soil types and textures. 74 soil cores were 
sampled for OM, CEC and pH analysis from these fields. The soil samples with 
six 0-15 cm deep cores were collected within a 10 m radius and composited, and 
tested in the soil testing lab of Kansas State University and the Midwest 
Laboratories testing lab in Nebraska. Information about the research fields in 4 
states is shown in Table 1. 
 
Table 1 Information of the research fields in 4 states.  
 
Field 
name 

Location: 
county 

Area 
(ha) 

No. of 
Sample Soil series 

IA1 Pocahontas 60 12 Clarion loam, Webster,  Canisteo & 
Nicollet clay loam 

IA2 Kossuth 60 15 Clarion & Nicollet loam, 
Canisteo clay loam 

IL1 Mason 30 4 Canisteo loam, Selma clay loam, 
Ridgeville sandy loam 

IL2 McLean 32 4 Sable & Harpster silty clay loam 

KS1 Saline 64 8 Longford silt loam, Crete silt loam, 
Wells loam 

KS2 Doniphan 50 21 Contrary-Monona silt loams 

NE1 Washington 22 5 Kezan-Kennebec silt loams, Judson & 
Marshall-Pohocco silty clay loam 

NE2 Washington 29 5 Marshall-Pohocco silty clay loams, 
Marshall silty clay loam 
 
 



Field equipment 
 

     Fig. 1 shows the Veris on-the-go soil EC, OM and pH sensing system 
(MSP3TM). The implement contains six coulter electrodes for EC measurements, a 
specially-configured row unit for optical measurements, and a soil sampling shoe 
and ion selective electrodes (ISEs) for pH measurements. The EC module 
measures EC values directly using rolling coulters inserted into the soil. The 
system maps soil texture based on the established practice of measuring soil EC in 
situ, whereby smaller soil particles such as clay conduct more current than larger 
silt and sand particles (Williams and Hoey, 1987). One pair of coulters in the 
module injects an electrical current into the soil and the other coulters measure the 
voltage change. The measurement from one pair is for a “shallow” EC (0–30 cm) 
and the other is for “deep” EC (0–90 cm).  
     The optical sensor module maps soil underneath crop residue and the soil 
surface. Soil measurements are acquired through a sapphire window on the 
bottom of a furrow ‘shoe’. Soil OM relates closely to productivity, and is a useful 
property for variable rate population and nitrogen. (Bauer and Black, 1994; 
Fleming et al., 2004). The device consists of several components including an 
opening coulter for cutting crop residue, a depth-control row unit, an optical 
module, electronics for signal conditioning, a data logger and a GPS. The optical 
module consists of a single photodiode, two light sources with a red light-emitting 
diode (LED) of 660 nm and a NIR LED of 940 nm wavelength. The modulated 
light is directed through the sapphire window onto the soil. The reflected light is 
then received by the photodiode, and converted to a modulated voltage. The 
converted modulated voltage is processed through the signal conditioning circuit, 
which separates each source of reflected light from the photodiode signal and 
converts the modulated voltage to a direct current (DC) voltage. The DC voltage 
is processed and then the output is sent serially to a laptop computer for data 
logging.  
     During field operation, the soil pH mapping unit automatically collects a soil 
sample and records its geographic position while traveling across the field. 
Measurements are conducted using antimony ion-selective pH electrodes. Every 
recorded measurement represents an average of the outputs produced by two 
independent electrodes, which allows in-field cross validation of electrode 
performance as well as filtering out erroneous readings. Extracted on-the-go soil 
cores are brought into direct contact with the electrodes and held in place for 7–20 
s (depending on the electrode response). At the end of each measuring cycle, both 
electrodes are rinsed with water. Simultaneously, a new sample is obtained to 
replace the analyzed soil. The average cycle time is approximately 10 s, but may 
vary according to the selected electrode stabilization criterion and electrode 
performance. All geo-referenced data are saved in delimited text files.  
 
 
 



 
 
Fig.  1. On-the-go soil EC, OM, and pH sensing systems (MSP3TM). 
 
 

Topography calculations 
 

Topographic attributes were calculated from elevation measurements collected 
simultaneously with the on-the-go sensing systems using a real-time kinematic 
GPS. Terrain slope was calculated based on the direction of steepest ascent or 
descent in the sensing location and represented as a slope angle from zero 
(horizontal) to 90 (vertical) degrees. Curvature is a measure of the curvature of 
contours, which reflects the rate of change of the terrain aspect angle measured in 
the horizontal plane. Negative values mean divergent water flow over the surface, 
and positive values mean convergent flow (Surfer, 2002). For obtaining slope and 
curvature values, grids were generated in each field after converting the longitude 
and latitude to meters in the Universal Transverse Mercator (UTM) system. The 
distance between grids was set to 10 m. The elevation data obtained with EC and 
OM at the original points was interpolated into the grids by a Gaussian kernel 
weighting method (Christy, 2008). Slope and curvature were then calculated by 
classical terrain modelling algorithms at each grid (Moore et al., 1993).  

 
Data logging and processing 

 
     All sensor data were acquired on a Windows PC with Veris SoilViewer 
software (Fig 2). Sensor views, colors, and data ranges are user-selectable and 
data is visually screened for instant data quality feedback. 
 



 
 

Fig. 2. SoilViewer EC, OM and pH mapping software. 
 
 
     The raw data obtained by the on-the-go soil sensing systems need data 
processing in order to remove outliers. GPS error outliers were removed when a 
sensing point is out of 100 m radius from the previous measurement location. 
Optical system outliers from the normal ranges of soil reflectance were filtered. 
Global field outliers that are not within three times the standard deviation from 
the mean of all field data, and local field outliers, when the value of optical data at 
each measurement location is greater than two times the standard deviation from 
the mean at the neighboring 10 sensing points, were also removed. 
     Using data collected by the optical and soil EC sensors, along with 
topographical data, a calibration routine with multivariate regression (MVR) 
programmed with LabVIEW (National Instruments Corp., Austin, TX, USA) tests 
every combination of sensor variables for their relationship to OM and CEC for 
fields with 10 or more lab-analyzed calibration samples. On fields with less than 
10 samples, single variable linear regressions were performed to avoid overfitting, 
using each sensor variable and lab-analyzed measurements. The routine performs 
a leave one out cross validation to the lab analyzed OM and CEC. Calibration 
statistics such as R2, RMSE (root mean squared error), standard deviation, and 
RPD (Ratio of Prediction to Deviation = standard deviation/ root mean squared 
error of prediction) are calculated and reported. The calibration with the highest 
RPD is used to apply to the field data to produce the OM and CEC estimations. 
RPD is a useful measure of fit to compare results from datasets with different 
degrees of variability (Hummel et al., 2001; Lee et al., 2009). Chang et al. (2001) 
categorized RPD ranges as high (> 2.0), medium (1.4-2.0) and low (< 1.4) to 



classify the ability of NIR to estimate soil properties. A higher RPD indicates a 
more accurate prediction. 
 

RESULTS 
 
     Table 2 shows descriptive statistics of OM, CEC and pH lab values for the 
research fields. Iowa fields have wide ranges of soil organic matter contents of 2.4 
-5.8 % and CEC values of 15.3-33.9 meq 100g-1, and Kansas soils have narrow 
ranges in the soil properties with 1.0-2.8 % for OM and 15.4-24.4 meq 100g-1 for 
CEC. CEC for Nebraska fields were not obtained. Illinois and Iowa fields have 
high OM values up to 5.8 %, and Kansas and Nebraska fields have relatively low 
OM values. The soil pH values in each the 8 fields have a similar range, with a 
difference of at least 2 points within each field. 
 
      
Table 2 Descriptive statistics of OM, CEC and pH lab values for the research 
fields.  
 

Field 
OM (%) CEC (meq 100g-1) pH 

Mean Range SD Mean Range SD Mean Range SD 

IA1 3.9 2.4-5.7 1.2 23.2 15.3-33.9 6.8 6.8 5.6-7.8 0.7 

IA2 4.4 2.8-5.8 1.1 23.4 15.7-30.0 4.7 6.7 5.2-7.9 0.9 

IL1 3.3 0.2-5.1 1.8 24.4 8.3-40.0 10.8 7.2 6.3-8.3 1.2 

IL2 4.7 4.4-5.1 0.1 32.2 26.9-40.0 5.6 6.8 5.0-8.0 1.4 

KS1 1.8 1.5-2.4 0.3 19.2 15.4-24.4 3.0 6.7 5.2-7.8 1.0 

KS2 2.0 1.0-2.8 0.5 18.0 13.4-22.5 2.1 5.6 4.7-7.8 1.0 

NE1 2.3 1.4-4.0 1.0 - - - 6.8 5.6-8.2 1.2 

NE2 1.8 1.0-2.4 0.6 - - - 6.1 5.4-8.4 1.3 
 
 
     Table 3 shows calibration results for OM, CEC and pH. IL1 had the highest R2 
and RPD of 0.94 and 4.62 for OM. IL2 and KS1 fields were not as highly 
correlated, with R2 of 0.54 and 0.44, and RPD of 1.70 and 1.43, respectively, 
although they had the lowest RMSE. This may be because of narrow ranges of 
variability in these fields as seen in Table 2. For CEC, all fields except KS2 had 
good results with RPD of 1.98 or higher.  IL1 had the highest R2 and RPD of 0.94 
and 4.58. IL2 had the highest correlation and RPD for pH. 
 
 
 
 



Table 3 Calibration results for OM, CEC and pH for the research fields.  
 

Field 
OM (%) CEC (meq 100g-1) pH 

R2 RMSE RPD R2 RMSE RPD R2 RMSE RPD 

IA1 0.84 0.48 2.61 0.84 2.59 2.63 0.58 0.45 1.61 

IA2 0.92 0.29 3.71 0.88 1.65 2.93 0.77 0.47 2.19 

IL1 0.94 0.31 4.62 0.94 1.92 4.58 0.82 0.34 2.70 

IL2 0.54 0.18 1.70 0.66 2.85 1.98 0.98 0.15 8.25 

KS1 0.44 0.20 1.43 0.93 0.77 3.93 0.89 0.31 3.21 

KS2 0.78 0.21 2.19 0.17 1.89 1.12 0.67 0.18 1.80 

NE1 0.92 0.25 4.01 - - - 0.94 0.25 4.47 

NE2 0.81 0.23 2.55 - - - 0.91 0.34 3.75 
 

 
     The dense coverage provide by proximal soil sensors is best illustrated with 
sensor point data maps. Typically, more than 200 EC and optical measurements 
are collected per hectare and 10-20 pH sensor readings per ha. Fig 3 shows soil 
CEC, OM and pH maps for KS1 estimated by the multiple sensors with lab-
analyzed soil samples overlaid. The data have been collected at an adequate 
spatial scale to show pass-to-pass repeatability. The spatial structure of the soil 
properties is discernible even without interpolating or other manipulation. 
     Fig. 4 shows interpolated sensor maps for IA1 of soil CEC, OM and pH 
estimated by the on-the-go sensing system, with 1 ha (2.5 acre) grid lines overlaid.  
There is a wide range of variability within many of the grid cells with CEC values 
ranging 10 meq 100g-1, and OM 1-2 %. The pH within-grid variations range from 
spots within the grid requiring no lime to acid areas that would require over 4 
tons/ha. 
     Fig. 5 shows OM and pH scatter plots for all the datasets in the research fields. 
Correlation between lab measured and estimated values showed very high for OM 
(R2 = 0.95) and pH (R2 = 0.85). Both datasets had low RMSE with 0.30 and 0.43, 
respectively. 
     Fig. 6 shows scatter plots between lab-measured CEC and sensed EC values, 
and between lab-measured CEC and estimated CEC by the EC and OM sensors. 
EC values alone did not have high correlations to CEC (R2 = 0.41), however EC 
along with optical sensors showed high correlation with R2 of 0.90.    
 
 

 
 
 



 

 

 
 

Fig.  3. Soil CEC, OM and pH maps from proximal sensing systems with lab-
analyzed soil samples overlaid for KS1. 

 
 

      



 

   
 

Fig.  4. Soil CEC, OM and pH maps by the on-the-go sensing systems on 2.5 acre 
grids for IA1. 
      
 
 

    
 

Fig.  5.  Soil organic matter and pH scatter plots for research fields in 4 states. 
 

 
      

   
 
Fig.  6. Scatter plots for EC and estimated CEC with lab measured CEC. 

 
 
 



DISCUSSION 
 
     The results presented above show that readings from the multi-sensor system 
correlated well with lab-analyzed samples. The fields with the lowest OM 
correlation, IL2 and KS1, had a very low level of OM variability with standard 
deviations of 0.1 and 0.3 respectively.  Even with low R2 and RPD scores on those 
fields, the OM RMSEs were the lowest of all fields. CEC results showed a similar 
response, with sensors achieving better results in more variable fields. The 
combination of EC and optical measurements correlated significantly better to 
CEC than either sensor individually. This could be expected, as CEC is affected 
by both soil texture and organic matter. Proximal pH sensor readings correlated 
well with lab pH on all project fields. Interestingly, the IL2 and KS1 fields that 
had low OM variability had some of the highest pH variations and best RPDs with 
pH sensors. This illustrates the value of a multi-sensor approach, as having 
several properties mapped at a dense spatial scale increases the likelihood of 
uncovering whatever soil property variations may be present. The improvement in 
CEC predictions by including other sensor data versus soil EC alone, as shown in 
Fig. 6, further illustrates the benefits of mapping with multiple soil sensors. 
     In order to compare the sensor maps and the USDA soil surveys for these 
fields, and attempt to quantify differences between the approaches, it is instructive 
to use the self-described soil survey limitations listed earlier. These are: 1) the 
wide range of soil property values listed for each soil type, 2) size of allowed 
inclusions within a map unit, and 3) line placement accuracy. First, the range 
found within soil survey map units for OM on many Midwestern silt and silty clay 
loam soils is ~2-3 %, the CEC range is ~5-10 (meq 100g-1), for pH a ~1-2 point 
range. Using proximal soil sensors, the average RMSE for the project fields for 
OM was 0.27, CEC 2.12, and pH 0.38. As a result, confidence intervals using 
sensor data are significantly lower than the soil property ranges found in the soil 
surveys for these fields. Slope information in soil surveys is also a coarser than 
measurements acquired using high-grade GPS receivers. GPS data can also be 
used to generate precise maps of field curvature. These advancements in relevant 
soil property resolution provided by the multi-sensor system are a quantifiable 
improvement over the information found in the accompanying soil surveys.       
     Soil survey inclusions can present a serious problem if inputs are varied 
according to the expected productivity within a map unit. Even for a 1 ha 
inclusion, the minimum for a fine-scale survey, the included soil represents a 
~100 m × 100 m area. A large 24 row planter would make at least five passes 
through that inclusion, potentially metering a severely sub-optimal rate for the 
inclusion. Proximal soil sensors are typically operated on 15-20 m transects, 
which more closely matches the capability of farm equipment to apply inputs site-
specifically. With GPS and proximal soil sensors the location of changes in soil 
properties can easily be mapped within 1-2 m. Sensor maps reflect the spatial 
pattern of soil as a continuum, identifying soil transitions precisely whether they 
occur gradually or suddenly, while soil survey lines can only depict soil 
differences as abrupt boundaries. 
     Using IL1 shown in Figure 7 as an example of the improved mapping that 
proximal sensors can provide, it is apparent that while the soil survey is effective 
at delineating the sandy soil in the 88B Sparta, it allows several sizeable 



inclusions in the highly productive 125 Selma clay loam and 447 Canisteo loam.  
The soil survey lists the OM range for Selma at 4-6 % and the Canisteo at 4-8 %.   
Calibrated proximal sensors mapped OM areas of <1 % included within the both 
of these soil types. These deviations from the survey-listed OM and CEC could 
seriously affect the performance of practices such as variable rate corn population 
and nitrogen in these survey units. 
 

                 
Fig.  7. Calibrated soil CEC, OM and pH maps from the proximal soil sensing 
systems with a USDA soil survey map overlaid for IL1. 
 
 

CONCLUSIONS 
 
     This eight-field study across four Midwestern states provided an opportunity to 
evaluate a proximal multi-sensor platform in a variety of soil types and field 
conditions. Proximal soil sensor measurements correlated well with lab-analyzed 
soil samples, and sensor maps showed small-scale variability not detected at 
conventional grid sample scales or with USDA soil surveys. This is a promising 
development for improving the effectiveness of several variable-rate inputs. The 
value of the additional precision will depend on many factors including cost of 
inputs and value of crops grown. In order to further quantify the differences 
between the sensor maps and other available information, additional research is 
needed, using yield data, intensive soil sampling, and variable rate trials.  
 

ACKNOWLDEGEMENTS 
 

The following individuals and companies assisted with field data:  NE1 and 2: 
Aaron Nelson, Nelson Precision Agronomics; KS2: Brook Mitchell, Wilbur-Ellis 
Co. 



REFERENCES 
 

Adamchuk, V.I., J.W. Hummel, M.T. Morgan, S.K. Upadhyaya. 2004. On-the-go 
soil sensors for precision agriculture. Comput. Electron. Agric. 44:71–91.  

Adamchuk, V.I., E.D. Lund, B. Sethuramasamyraja, M.T. Morgan, 
A. Dobermann, D.B. Marx. 2005. Direct measurement of soil chemical 
properties on-the-go using ion-selective electrodes. Comput. Electron. Agric. 
48(3):272–294. 

Bauer, A., and A.L. Black. 1994. Quantification of the effect of soil organic       
matter content on soil productivity. Soil Sci. Soc. of Am. J. 58:185–193. 

Bianchini, A.A. and A.P. Mallarino. 2002. Soil-sampling alternatives and 
variable-rate liming for a soybean–corn rotation.  Agron. J. 94(6):1355–1366. 

Bot, A. and J. Benites. 2005. The importance of soil organic matter. Food and 
Agriculture Organization of the United Nations.  

Brevik, E.C., T.E. Fenton, and D.B. Jaynes. 2003. Evaluation of the accuracy of a 
central Iowa soil survey and implications for precision soil management. Prec. 
Ag. 4(3):331–342.  

Brouder, S.M., B.S. Hofmann, and D.K. Morris 2005. Mapping soil pH: Accuracy 
of common soil sampling strategies and estimation techniques. Soil Sci. Soc. of 
Am. J. 69:427–441. 

Chang, C.W., D.A. Laird, M.J. Mausbach, and C.R. Hurburgh, Jr. 2001. Near-
infrared reflectance spectroscopy – principal components regression analysis of 
soil properties. Soil Sci. Soc. of Am. J. 65:480–490. 

Christy, C.D. 2008. Real-time measurement of soil attributes using on-the-go near 
infrared reflectance spectroscopy. Comput. Electron. Agric. 61(1):10–19. 

Fleming, K.L., D.F. Heermann, and D.G. Westfall. 2004. Evaluating soil color 
with farmer input and apparent soil electrical conductivity for management zone 
delineation. Agron. J. 96:1581–1587. 

Grisso, R., M. Alley, D. Holshouser, and W. Thomason. 2009. Precision farming 
tools: Soil electrical conductivity. Virginia Cooperative 
Extenstion. http://pubs.ext.vt.edu/442/442-508/442-508.html 

Hummel, J.W., K.A. Sudduth, and S.E. Hollinger. 2001. Soil moisture and 
organic matter prediction of surface and subsurface soils using an NIR soil 
sensor. Comput. Electron. Agric. 32:49–165. 

Kitchen, N.R., S.T. Drummond, E.D. Lund, K.A. Sudduth, G.W. Buchleiter. 
2003. Soil electrical conductivity and other soil and landscape properties related 
to yield for three contrasting soil and crop systems. Agron. J. 95:483–495. 

http://www.springerlink.com/content/?Author=Eric+C.+Brevik
http://www.springerlink.com/content/?Author=Thomas+E.+Fenton
http://www.springerlink.com/content/?Author=Dan+B.+Jaynes
http://www.springerlink.com/content/1385-2256/
http://www.springerlink.com/content/1385-2256/
http://pubs.ext.vt.edu/442/442-508/442-508.html


Kweon, G., C.R. Maxton, E.D. Lund. 2012. Soil organic matter sensing with an 
on-the-go soil optical sensor. Biosys. Eng. (submitted). 

Lee, K.S., D.H. Lee, K.A. Sudduth, S.O. Chung, N.R. Kitchen, and S.T. 
Drummond. 2009. Wavelength identification and diffuse reflectance estimation 
for surface and profile soil properties. Trans. ASABE 52:683–695.  

Logsdon, S., D. Clay, D. Moore, T. Tsegaye. 2008. Soil science step-by-step field 
analysis. P. 147. SSSA, Madison, WI. 

Lund, E.D., C.D. Christy, C.D., P.E. Drummond. 1998. Applying soil electrical 
conductivity technology to precision agriculture. Proceedings of the 4th 
International Conference on Precision Agriculture, St. Paul, MN. 19–22 July. 

Lund, E.D. and C.R. Maxton. 2011. Proximal sensing of soil organic matter using 
the Veris® OpticMapper™. The 2nd Global Workshop on Proximal Soil 
Sensing, McGill University, Quebec, Canada. 15–19 May.  

McBratney,  A., and M. Pringle. 1997. Spatial variability in soil–implications for 
precision agriculture. European Conference on Precision Agriculture 1. 
Warwick University, UK. p. 3–31. 

Moore, I.D., A. Lewis, and J.C. Gallant. 1993. Terrain attributes: Estimation 
methods and scale effects. In A.J. Jakeman et al., (ed.), Modelling change in 
environmental systems. John Wiley and Sons Ltd, London. p. 189–214. 

Natural Resources Conservation Service. 2001. Soil survey of Champaign County, 
Illinois. Part II. P. 268. 

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service, 
U.S. Department of Agriculture.  

Surfer. 2002. User’s guide. Golden software, Inc. p. 419. 

Williams, B.G., and D. Hoey, 1987. The use of electromagnetic induction to 
detect the spatial variability of the salt and clay content of soils. Aust. J. Soil 
Res. 25:21–27. 


