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ABSTRACT 
 
     Precise path tracking control of tractors and implements is a key factor for 
automation of agriculture. Path tracking controllers for tractors are highly devel-
oped and the focus is now on precise control of implements. Most recently the 
attention was drawn to implements being equipped with steering actuators them-
selves. For control of those steerable implements understanding the underlying 
vehicle dynamics now becomes essential. This work therefore derives easily ex-
tensible kinematic and dynamic models for tractors and steerable towed imple-
ments. A flexible path tracking controller allowing to combine steering options 
freely is presented for the overall system. Finally a system analysis is performed 
and simulation results comparing kinematic and dynamic model based control 
approaches are presented in order to facilitate choosing the appropriate model. 
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INTRODUCTION 
 
     Path tracking control of tractors became the enabling technology for automa-
tion of field work in recent years. More and more sophisticated tractor control 
systems however revealed that exact positioning of the actual implement is equal-
ly or even more important. Especially sloped and curved terrain, strip till fields 
and buried drip irrigation tapes require precise implement control. For this reason 
the attention is now drawn to path tracking control using actively steered  
 
 
 
 



implements. Despite the existence of first path tracking control systems for steer-
able implements, little is known about the underlying kinematic and dynamic  
properties of tractor and steerable implement combinations. As a consequence 
design and setup of those path tracking control systems mainly depend on in-field 
adjustments performed first by the developer and later by the operator. Under-
standing the underlying kinematic and dynamic principles now becomes essential 
for further development of those systems.  
     Kinematic models, i.e. models disregarding forces associated with tractor and 
implement motion, of unsteered implements are subject to research by (Bell, 
1999), (Bevly, 2001) and (Cariou et al., 2010). (Backman, 2009) presented a kin-
ematic model with steerable drawbar.  
     Dynamic modeling of on-road truck and unsteered trailer combinations has 
been around for a long time and the systematic approaches presented by (Genta, 
1997) and (Chen and Tomizuka, 1995) proved to be useful for this work. Off-road 
tractor and unsteered implement dynamics are subject to research by (Karkee and 
Steward, 2010). (Pota et al., 2007) and (Siew et al., 2009) with little additional 
effort added steerable wheels to a dynamic implement model. This is in contrast 
to the large effort necessary for dynamic modeling of steering actuators between 
tractor and implement, e.g. a steerable drawbar. The time dependent constraints 
introduced with those actuators turn out to result in very lengthy expressions.  
     In order to handle those expressions this work uses a very systematic approach 
based on Lagrangian mechanics originally proposed for unsteered truck trailer 
combinations (Genta, 1997). This approach has been extended to steered imple-
ments and was presented previously in (Werner et al., 2012). In addition now a 
systematic approach for kinematic modeling of tractors and steerable implements 
is included, with both approaches suitable for simple addition or replacement of 
actuators. Considering both the kinematic and the dynamic model allows for di-
rect comparison and supports choosing the appropriate model for the given task. 
Due to simple parameterization, of course, a kinematic model is preferred for 
model based controller design, as long as it is able to provide a suitable descrip-
tion of the actual system. System analysis is performed with both models and lin-
earized versions of both models are used for path tracking controller design. Sev-
eral path tracking controllers for the resulting multiple-input and multiple output 
(MIMO) system are proposed. Finally simulation results are presented comparing 
performance of controllers based on either kinematic or dynamic model descrip-
tions. 
 

TRACTOR AND STEERABLE IMPLEMENT MODEL 
 
     With focus on path tracking and lateral dynamics a bicycle model approach is 
chosen for both kinematic and dynamic modeling. Fig. 1 depicts the bicycle mod-
el of a front-steering tractor towing an implement with steerable wheels and steer-
able drawbar. The bicycle model is limited to plane motion. Roll and pitch 
movement as well as wheel load transfer are neglected, yet the influence of gravi-
ty on slopes will be considered by introducing disturbances. For later use the x-y-
coordinate transformation matrices 𝐓𝑡,𝑒, 𝐓𝑟1𝑑,𝑒, and 𝐓𝑟1,𝑒 from tractor-fixed, 
drawbar-fixed, and implement-fixed to earth-fixed coordinates can be found to be:  
 



  

Fig.  1. Tractor and steerable implement bicycle model with earth-fixed (𝐞𝒙𝒆, 
𝐞𝒚𝒆, 𝐞𝒛𝒆), tractor-fixed (𝐞𝒙𝒕, 𝐞𝒚𝒕, 𝐞𝒛𝒕), implement-fixed (𝐞𝒙𝒓𝟏, 𝐞𝒚𝒓𝟏, 𝐞𝒛𝒓𝟏), 
drawbar-fixed (𝐞𝒙𝒓𝟏𝒅 , 𝐞𝒚𝒓𝟏𝒅 , 𝐞𝒛𝒓𝟏𝒅 ) coordinate systems, tractor wheel steer-
ing angle 𝜹𝒕𝒇, implement wheel steering angle 𝜹𝒓𝟏𝒓, drawbar steering angle 
𝜹𝒓𝟏𝒅, hitch angle 𝜹𝒕𝒉𝒓, tractor heading angle 𝜳𝒕, implement heading angle 
𝜳𝒓𝟏, orientation of the desired path 𝜳𝒅, tractor lateral error 𝒆𝒕𝒍, tractor 
heading error 𝒆𝒕𝒉, implement lateral error 𝒆𝒓𝟏𝒍 , implement heading error 
𝒆𝒓𝟏𝒉, and all geometric parameters required. 



 
𝐓𝑡,𝑒 = 𝐓(𝛹𝑡)

𝐓𝑟1𝑑,𝑒 = 𝐓(𝛹𝑡 − 𝛿𝑡ℎ𝑟)
𝐓𝑟1,𝑒 = 𝐓(𝛹𝑡 − 𝛿𝑡ℎ𝑟 − 𝛿𝑟1𝑑)

�with 𝐓(•) = �cos(•) − sin(•)
sin(•) cos(•)�.   [1] 

 
Kinematic Equations of Motion 

 
     Kinematic vehicle models provide a simplified description of the actual vehi-
cle movement. Instead of deriving the equations of motion on foundations of dy-
namic principles taking into account forces and moments, those equations are 
derived from more idealized constraints. First of all the tractor longitudinal ve-
locity 𝑣𝑡𝑥𝑡 is assumed to be an input to the system, disregarding what actually 
causes that velocity. In addition the vehicle’s velocity vectors at the wheels in 
Fig. 1 are assumed to be aligned with the according wheel’s longitudinal direc-
tion, i.e. no wheel side-slip occurs. Defining the vectors 𝐞𝑡𝑓 and 𝐞𝑟1𝑟 perpendicu-
lar to the longitudinal axis of tractor front and implement wheel respectively and 
using the velocities 𝐯𝑡𝑓 and 𝐯𝑟1𝑟 at tractor front and implement wheel those con-
straints are given by 
 𝐞𝑡𝑓T 𝐯𝑡𝑓 = 0, [2] 

 𝐞𝑟1𝑟T 𝐯𝑟1𝑟 = 0, [3] 
or using tractor-fixed coordinates 

 �− sin�𝛿𝑡𝑓� cos�𝛿𝑡𝑓�� �
𝑣𝑡𝑓𝑥𝑡

𝑣𝑡𝑓
𝑦𝑡� = 0, [4] 

 [− sin(𝛿𝑟1𝑟 − 𝛿𝑟1𝑑 − 𝛿𝑡ℎ𝑟) cos(𝛿𝑟1𝑟 − 𝛿𝑟1𝑑 − 𝛿𝑡ℎ𝑟)] �
𝑣𝑟1𝑟𝑥𝑡

𝑣𝑟1𝑟
𝑦𝑡 � = 0. [5] 

In order to obtain the unknown velocities in Eq. [4] and [5] tractor front wheel 
position 𝐫𝑡𝑓 and implement wheel position 𝐫𝑟1𝑟 are related to the tractor rear 
wheel position 𝐫𝑡𝑟 using earth-fixed coordinates and Eq. [1]: 

 �
𝑟𝑡𝑓𝑥𝑒

𝑟𝑡𝑓
𝑦𝑒� =  �

𝑟𝑡𝑟𝑥𝑒

𝑟𝑡𝑟
𝑦𝑒� +  𝐓𝑡,𝑒 �

𝑙𝑡𝑟 + 𝑙𝑡𝑓
0

�, [6] 

 �
𝑟𝑟1𝑟𝑥𝑒

𝑟𝑟1𝑟
𝑦𝑒 � =  �

𝑟𝑡𝑟𝑥𝑒

𝑟𝑡𝑟
𝑦𝑒� +  𝐓𝑡,𝑒 �

−𝑙𝑡ℎ𝑟
0 � +  𝐓𝑟1𝑑,𝑒 �

−𝑙𝑟1𝑑
0 � +  𝐓𝑟1,𝑒 �

−𝑙𝑟1𝑓 − 𝑙𝑟1𝑟
0

�. [7] 

Calculating the time derivatives of Eq. [6] and [7], substituting 

 
𝑑
𝑑𝑡
�
𝑟𝑡𝑟𝑥𝑒

𝑟𝑡𝑟
𝑦𝑒� = 𝐓𝑡,𝑒 �

𝑣𝑡𝑥𝑡
0
�, [8] 

and transforming the result into tractor-fixed coordinates yields 

 �
𝑣𝑡𝑓𝑥𝑡

𝑣𝑡𝑓
𝑦𝑡� = �

𝑣𝑡𝑥𝑡

�̇�𝑡 �𝑙𝑡𝑟 + 𝑙𝑡𝑓�
� [9] 

and a lengthy expression for �𝑣𝑟1𝑟𝑥𝑡 𝑣𝑟1𝑟
𝑦𝑡 �

T
omitted here. Using both expressions it 

is possible to solve Eq. [4] and [5] for �̇�𝑡 and �̇�𝑡ℎ𝑟 finally resulting in: 



 �̇�𝑡 =
𝑣𝑡𝑥𝑡

�𝑙𝑡𝑟 + 𝑙𝑡𝑓�
tan�𝛿𝑡𝑓�, [10] 

 �̇�𝑡ℎ𝑟 = 𝑛𝑢𝑚 𝑑𝑒𝑛⁄  [11] 
with 

 

𝑛𝑢𝑚 = ��sin�𝛿𝑡𝑓 + 𝛿𝑡ℎ𝑟 + 𝛿𝑟1𝑑 − 𝛿𝑟1𝑟�
− sin�−𝛿𝑡𝑓 + 𝛿𝑡ℎ𝑟 + 𝛿𝑟1𝑑 − 𝛿𝑟1𝑟�� 𝑙𝑡ℎ𝑟
+ �sin�𝛿𝑡𝑓 − 𝛿𝑡ℎ𝑟 − 𝛿𝑟1𝑑 + 𝛿𝑟1𝑟�
− sin�𝛿𝑡𝑓 + 𝛿𝑡ℎ𝑟 + 𝛿𝑟1𝑑 − 𝛿𝑟1𝑟�� �𝑙𝑡𝑟 + 𝑙𝑡𝑓�
+ �sin�𝛿𝑡𝑓 + 𝛿𝑟1𝑑 − 𝛿𝑟1𝑟�
−  sin�−𝛿𝑡𝑓 + 𝛿𝑟1𝑑 − 𝛿𝑟1𝑟�� 𝑙𝑟1𝑑  
+ �sin�𝛿𝑡𝑓 + 𝛿𝑟1𝑟� −  sin�−𝛿𝑡𝑓 + 𝛿𝑟1𝑟�� �𝑙𝑟1𝑟
+ 𝑙𝑟1𝑓�� 𝑣𝑡𝑥𝑡

− �cos�−𝛿𝑡𝑓+𝛿𝑟1𝑟� +  cos�𝛿𝑡𝑓 + 𝛿𝑟1𝑟�� �𝑙𝑟1𝑟 + 𝑙𝑟1𝑓� �𝑙𝑡𝑟
+ 𝑙𝑡𝑓� �̇�𝑟1𝑑, 

[12] 

 
𝑑𝑒𝑛 =  �𝑙𝑡𝑟 + 𝑙𝑡𝑓���cos�−𝛿𝑡𝑓 + 𝛿𝑟1𝑑 − 𝛿𝑟1𝑟�

+ cos�𝛿𝑡𝑓 + 𝛿𝑟1𝑑 − 𝛿𝑟1𝑟�� 𝑙𝑟1𝑑
+ �cos�−𝛿𝑡𝑓 + 𝛿𝑟1𝑟� + cos�𝛿𝑡𝑓 + 𝛿𝑟1𝑟���𝑙𝑟1𝑟 + 𝑙𝑟1𝑓��. 

[13] 

Note that with Eq. [12] the first order derivative of the drawbar steering angle 
�̇�𝑟1𝑑 is assumed to exist. Within this work this is ensured by adding steering actu-
ator dynamics including underlying steering angle control. 
 

Dynamic Equations of Motion 
 
Rigid body dynamics 
 
     In addition to the simple kinematic equations of motion Eq. [10–13] based on 
rather ideal assumptions and mostly geometric properties, now a dynamic descrip-
tion of tractor and steerable implement motion is derived. The according equa-
tions of motion are based on dynamic principles accounting for forces and mo-
ments causing the vehicle movement. Tractor and implement are now considered 
rigid bodies with masses 𝑚𝑡 and 𝑚𝑟1 and moments of inertia 𝐼𝑡 and 𝐼𝑟1 about 𝐞𝑧𝑡 
and 𝐞𝑧𝑟1 at the respective center of gravity (c.g.). Using the transformation matri-
ces Eq. [1] the constraints relating tractor and implement c.g. positions 𝐫𝑡 and 
𝐫𝑟1 in earth-fixed coordinates are: 

�
𝑟𝑟1𝑥𝑒

𝑟𝑟1
𝑦𝑒� =  �

𝑟𝑡𝑥𝑒

𝑟𝑡
𝑦𝑒� +  𝐓𝑡,𝑒 �

−𝑙𝑡𝑟 − 𝑙𝑡ℎ𝑟
0 � +  𝐓𝑟1𝑑,𝑒 �

−𝑙𝑟1𝑑
0 � +  𝐓𝑟1,𝑒 �

−𝑙𝑟1𝑓
0

�. [14] 

With the externally enforced drawbar steering angle 𝛿𝑟1𝑑 in transformation matrix 
𝐓𝑟1,𝑒 those constraints turn out to be explicitly time dependent. This results in 
very lengthy expressions making a manual derivation of the dynamic equations of 
motion unfeasible. To overcome this difficulty those equations are derived using 
an automated systematic procedure and computer algebra software. Lagrangian 



mechanics as well as thoughtful choice of generalized coordinates and transfor-
mations are key to this automated procedure. The approach sketched in this paper 
was presented previously (Werner et al., 2012) and extends the original method 
for trucks and unsteered trailers by (Genta, 1997). The latter also states a concise 
example for a smaller system.  
     Here the generalized coordinates 𝑞𝑖, 𝑖 = 1 … 4 for the remaining degrees of 
freedom are chosen to be 
 𝑞1 = 𝑟𝑡𝑥𝑒 , 𝑞2 = 𝑟𝑡

𝑦𝑒 , 𝑞3 = 𝛹𝑡, 𝑞4 =  𝛿𝑡ℎ𝑟 . [15] 
With Eq. [14] this results in the transformations from generalized to earth-fixed 
coordinates: 

 �
𝑟𝑡𝑥𝑒

𝑟𝑡
𝑦𝑒� =  �

𝑞1
𝑞2�, 

[16
] 

 𝛹𝑡 = 𝑞3, [17
] 

 
�
𝑟𝑟1𝑥𝑒

𝑟𝑟1
𝑦𝑒�

= �
𝑞1 − (𝑙𝑡𝑟 + 𝑙𝑡ℎ𝑟) cos(q3)− lr1d cos(q3 − q4) − lr1f cos(q3 − q4 − 𝛿𝑟1𝑑)
𝑞2 − (𝑙𝑡𝑟 + 𝑙𝑡ℎ𝑟) sin(q3)− lr1d sin(q3 − q4) −  lr1f sin(q3 − q4 − 𝛿𝑟1𝑑)�  

[18
] 

 𝛹𝑟1 = 𝑞3 − 𝑞4 − 𝛿𝑟1𝑑. [19
] 

The kinetic energy 𝑇 (Greenwood, 1988) of tractor and implement is 

 𝑇 =
1
2
𝑚𝑡‖𝐯𝑡‖2 +  

1
2
𝑚𝑟1‖𝐯𝑟1‖2 +

1
2
𝐼𝑡(𝜔𝑡

𝑧𝑒)2 +
1
2
𝐼𝑟1(𝜔𝑟1

𝑧𝑒)2 [20] 

with  

 𝐯𝑡 = �̇�𝑡 =  �
�̇�𝑡𝑥𝑒

�̇�𝑡
𝑦𝑒� ,  𝐯𝑟1 = �̇�𝑟1 =  �

�̇�𝑟1𝑥𝑒

�̇�𝑟1
𝑦𝑒� ,  𝜔𝑡

𝑧𝑒 = �̇�𝑡 ,  𝜔𝑟1
𝑧𝑒 = �̇�𝑟1. [21] 

Combining Eq. [16–21] results in the kinetic energy 𝑇 being a function of gener-
alized coordinates 𝑞𝑖, 𝑖 = 1 … 4 and drawbar steering angle 𝛿𝑟1𝑑 as well as their 
first order time derivatives.  
     Without a potential energy function 𝑉 modeling conservative forces La-
grange’s equations of motion are: 

 
𝑑
𝑑𝑡
�
𝜕𝑇
𝜕�̇�𝑖

� −
𝜕𝑇
𝜕𝑞𝑖

= 𝑄𝑖, with 𝑖 = 1 … 4. [22] 

The generalized forces 𝑄𝑖 of Eq. [22] are yet to be determined. Their purpose in 
this paper is to account for wheel forces and disturbing forces resulting from grav-
ity. For a more general result however generalized forces are calculated assuming 
arbitrary external forces 𝐹𝑡𝑥𝑒, 𝐹𝑡

𝑦𝑒, 𝐹𝑟1𝑥𝑒, 𝐹𝑟1
𝑦𝑒 acting on tractor and implement c.g. 

as well as moments 𝑀𝑡
𝑧𝑒,  𝑀𝑟1

𝑧𝑒 about 𝐞𝑧𝑡 and 𝐞𝑧𝑟1. 
   The generalized forces 𝑄𝑖 are then given by (Greenwood, 1988) 
 𝑄𝑖 =  𝐹𝑡𝑥𝑒𝛾𝑡,𝑖

𝑥𝑒 + 𝐹𝑡
𝑦𝑒𝛾𝑡,𝑖

𝑦𝑒 +  𝑀𝑡
𝑧𝑒𝛽𝑡,𝑖

𝑧𝑒 + 𝐹𝑟1𝑥𝑒𝛾𝑟1,𝑖
𝑥𝑒 + 𝐹𝑟1

𝑦𝑒𝛾𝑟1,𝑖
𝑦𝑒 +  𝑀𝑟1

𝑧𝑒𝛽𝑟1,𝑖
𝑧𝑒 ,  [23] 

with the velocity and angular velocity coefficients 



 𝛄𝑡,𝑖 =
𝜕�̇�𝑡
𝜕�̇�𝑖

=  
𝜕𝐫𝑡
𝜕𝑞𝑖

,  𝛽𝑡,𝑖
𝑧𝑒 =

𝜕𝜔𝑡
𝑧𝑒

𝜕�̇�𝑖
,  𝛄𝑟1,𝑖 =

𝜕�̇�𝑟1
𝜕�̇�𝑖

=  
𝜕𝐫𝑟1
𝜕𝑞𝑖

,  𝛽𝑟1,𝑖
𝑧𝑒 =

𝜕𝜔𝑟1
𝑧𝑒

𝜕�̇�𝑖
 . [24] 

The equations of motion given by Eq. [22–24] and subsequent substitutions using 
Eq. [15] yield equations with accelerations, velocities, forces, etc. in earth-fixed 
coordinates. This allows for numerical integration. Linearization required for con-
troller design however is not possible because 𝑞3 = 𝛹𝑡 in general is not a small 
angle. To overcome that problem equations of motion in vehicle-fixed coordinates 
have to be found. This is done by first calculating only the partial derivatives in 
Eq. [22] and [24]. In a next step generalized coordinates are replaced by earth-
fixed coordinates using Eq. [15]. Subsequently with Eq. [1] forces and moments, 
are stated in tractor and implement-fixed coordinates using 

 �
𝐹𝑡𝑥𝑒

𝐹𝑡
𝑦𝑒� =  𝐓𝑡,𝑒 �

𝐹𝑡𝑥𝑡

𝐹𝑡
𝑦𝑡� ,  𝑀𝑡

𝑧𝑒 =  𝑀𝑡
𝑧𝑡, �

𝐹𝑟1𝑥𝑒

𝐹𝑟1
𝑦𝑒� =  𝐓𝑟1,𝑒 �

𝐹𝑟1𝑥𝑟1

𝐹𝑟1
𝑦𝑟1� ,  𝑀𝑟1

𝑧𝑒 =  𝑀𝑟1
𝑧𝑟1. [25] 

 
In addition tractor-fixed velocities 𝑣𝑡𝑥𝑡 and 𝑣𝑡

𝑦𝑡 are introduced with  

 �
�̇�𝑡𝑥𝑒

�̇�𝑡
𝑦𝑒� = 𝐓𝑡,𝑒 �

𝑣𝑡𝑥𝑡

𝑣𝑡
𝑦𝑡�. [26] 

Now the still pending time derivative in Eq. [22] is performed in vehicle-fixed 
coordinates. Finally the matrix multiplications 

 𝐓𝑡,𝑒
−1

⎣
⎢
⎢
⎢
⎡
𝑑
𝑑𝑡
�
𝜕𝑇
𝜕�̇�1

� −
𝜕𝑇
𝜕𝑞1

𝑑
𝑑𝑡
�
𝜕𝑇
𝜕�̇�2

� −
𝜕𝑇
𝜕𝑞2⎦

⎥
⎥
⎥
⎤

= 𝐓𝑡,𝑒
−1 �𝑄1𝑄2

� [27] 

and a multitude of purely trigonometric simplifications similar to those in the 
more concise example (Genta, 1997) results in the nonlinear differential equations 

 
⎣
⎢
⎢
⎢
⎡ �̇�𝑡

𝑥𝑡

�̇�𝑡
𝑦𝑡

�̈�𝑡
�̈�𝑡ℎ𝑟⎦

⎥
⎥
⎥
⎤

= 𝐟�𝑣𝑡𝑥𝑡, 𝑣𝑡
𝑦𝑡 , �̇�𝑡 , �̇�𝑡ℎ𝑟 , 𝛿𝑡ℎ𝑟 , �̈�𝑟1𝑑, �̇�𝑟1𝑑, 𝛿𝑟1𝑑,𝐹𝑡𝑥𝑡,𝐹𝑡

𝑦𝑡,𝑀𝑡
𝑧𝑡,𝐹𝑟1𝑥𝑟1,𝐹𝑟1

𝑦𝑟1,𝑀𝑟1
𝑧𝑟1� 

[28] 

The most important result is that Eq. [28] became independent of 𝛹𝑡, which has 
been the last reference to earth-fixed coordinates making linearization impossible. 
Unfortunately stating function 𝐟 in Eq. [28] completely as done for the more con-
cise kinematic equations of motion Eq. [11–13] is of very little use, because the 
length of the resulting expression would account for approximately 1.5 pages in 
this paper. With the given steps however it is possible to repeat the derivation 
invoking a computer algebra system. The length of the result also illustrates the 
limitations of dynamic modeling using explicit differential equations in case of 
steering actuators between tractor and implement. 
 
External forces and moments 
 



     In Eq. [28] external forces and moments are still stated in a general manner. 
Within this work external forces account for lateral disturbances modeling gravity 
on slopes as well as tire forces. Lateral disturbances are simply added to lateral 
forces 𝐹𝑡

𝑦𝑡and 𝐹𝑟1
𝑦𝑟1 acting on the respective center of gravity. Tire forces are 

modeled assuming a linear side slip to tire force relation using simple cornering 
stiffness parameters. From Fig. 2 the lateral tire force at the tractor front wheel 
results in 
 𝐅𝑡𝑓 = 𝐶𝛼,𝑡𝑓𝛼𝑡𝑓𝐞𝑦𝑡𝑓 [29] 
with cornering stiffness 𝐶𝛼,𝑡𝑓 and side slip angle 

 𝛼𝑡𝑓 =  𝛿𝑡𝑓 − tan−1 �
𝑣𝑡𝑓
𝑦𝑡

𝑣𝑡𝑓𝑥𝑡
� =  𝛿𝑡𝑓 − tan−1 �

𝑣𝑡
𝑦𝑡 + �̇�𝑡𝑙𝑡𝑓
𝑣𝑡𝑥𝑡

�. [30] 

Similar relations are used for tractor rear and implement tire forces, all together 
contributing to the forces and moments acting on tractor and implement c.g.  

 

  
Tracking Errors 

 
     Both kinematic and dynamic equations of motion so far hold independently of 
absolute vehicle position and heading. Those equations are based on linear and 
angular velocities and accelerations as well as hitch angle and drawbar steering 
angle. This is in agreement with what one would expect from underlying physics. 
Absolute vehicle position and heading could now be introduced by integrating 
linear and angular velocities. To allow for controller design and linearization 
however an expression of tractor and implement position in terms of deviations 
from a desired path is the better alternative. Tractor heading error 𝑒𝑡ℎ and lateral 
error 𝑒𝑡𝑙 shown in Fig. 1 are therefore defined using 
 �̇�𝑡ℎ = �̇�𝑡 − �̇�𝑑 , [31] 

 �̇�𝑡𝑙 = 𝑣𝑡𝑥𝑡 sin(𝑒𝑡ℎ) + �𝑣𝑡
𝑦𝑡 − 𝑙𝑡𝑟�̇�𝑡� cos(𝑒𝑡ℎ) [32] 

with �̇�𝑑 ≡ 0 for straight line tracking. �̇�𝑡 is given by Eq. [10] using the kinematic 
equations and found by integration of �̈�𝑡 using the dynamic equations. For 
straight line tracking the implement heading error 𝑒𝑟1ℎ and lateral error 𝑒𝑟1𝑙 can 

Fig.  2. Tractor front wheel showing velocity components 𝒗𝒕𝒇𝒙𝒕 and 𝒗𝒕𝒇
𝒚𝒕 used 

for calculation of side slip angle 𝜶𝒕𝒇 and lateral tire force 𝐅𝒕𝒇. 



be expressed using already existing systems states for both the kinematic and the 
dynamic equations of motion 
 𝑒𝑟1ℎ  =  𝑒𝑡ℎ  −  𝛿𝑡ℎ𝑟  −  𝛿𝑟1𝑑, [33] 

 𝑒𝑟1𝑙 = 𝑒𝑡𝑙 − �𝑙𝑟1𝑟 + 𝑙𝑟1𝑓� sin(𝑒𝑡ℎ  −  𝛿𝑡ℎ𝑟  −  𝛿𝑟1𝑑)
− 𝑙𝑟1𝑑 sin(𝑒𝑡ℎ  −  𝛿𝑡ℎ𝑟) − 𝑙𝑡ℎ𝑟 sin(𝑒𝑡ℎ) . 

[34] 

 
Steering Actuators 

 
     In order to complete the tractor and implement model steering actuator dynam-
ics is introduced. This is done using a rather high-level description assuming un-
derlying steering controllers enforcing a given steering angle command. Similar 
to (Karkee and Steward, 2010) a simple first order lag with time constant 𝑇𝑡𝑓 and 
input 𝛿𝑡𝑓,𝑑 is introduced for tractor front wheel steering. This is repeated for the 
implement wheel using the time constant 𝑇𝑟1𝑟 and input 𝛿𝑟1𝑟,𝑑, hence resulting in 
 �̇�𝑡𝑓 = �𝛿𝑡𝑓,𝑑 − 𝛿𝑡𝑓� 𝑇𝑡𝑓� , �̇�𝑟1𝑟 = �𝛿𝑟1𝑟,𝑑 − 𝛿𝑟1𝑟� 𝑇𝑟1𝑟 .⁄  [35] 
From Eq. [12] and [28] can be seen that first and second order time derivative of 
the drawbar steering angle 𝛿𝑟1𝑑 are inputs to the kinematic and the dynamic equa-
tions of motion. For the dynamic equations of motion in particular this is obvious-
ly due to �̈�𝑟1𝑑 being related to the moment required to steer the drawbar and to 
move the rigid bodies. Drawbar steering dynamics therefore is modeled using a 
second order delay with time constant 𝑇𝑟1𝑑, damping ratio 𝐷𝑟1𝑑 and input 𝛿𝑟1𝑑,𝑑 
resulting in 
 �̈�𝑟1𝑑 = �𝛿𝑟1𝑑,𝑑 − 2𝐷𝑟1𝑑𝑇𝑟1𝑑�̇�𝑟1𝑑 − 𝛿𝑟1𝑑� 𝑇𝑟1𝑑2 .�  [36] 

 
PATH TRACKING CONTROL 

 
     Both the kinematic model Eq. [10–13] and the dynamic model Eq. [28–30] are 
used for controller design in this work in order to study the trade-off between con-
troller performance and model parameterization effort. Each model is completed 
by tracking errors Eq. [31–34] and steering actuator dynamics Eq. [35] and [36]. 
Control theory for linear systems is used in both cases, therefore linear time invar-
iant approximations of the kinematic and dynamic model are developed. This is 
done by assuming a constant forward velocity 𝑣𝑡𝑥𝑡 ≡ 𝑣𝑡𝑐𝑥𝑡 and performing a Taylor 
series expansion up to degree 1 about 

 �𝑒𝑡𝑙, 𝑒𝑡ℎ, 𝑣𝑡
𝑦𝑡, �̇�𝑡, 𝛿𝑡ℎ𝑟 , �̇�𝑡ℎ𝑟 , 𝛿𝑡𝑓 ,𝛿𝑟1𝑑, �̇�𝑟1𝑑, 𝛿𝑟1𝑟 ,𝛿𝑡𝑓,𝑑, 𝛿𝑟1𝑑,𝑑, 𝛿𝑟1𝑟,𝑑�

𝑇
= 𝟎. [37] 

This results in two variants of the linear system 
 �̇� = 𝐀𝐳 + 𝐁𝐮, 𝐲 = 𝐂𝐳, [38] 

 𝐮 = �𝛿𝑡𝑓,𝑑, 𝛿𝑟1𝑑,𝑑, 𝛿𝑟1𝑟,𝑑�
𝑇

,𝐲 = [𝑒𝑡𝑙 , 𝑒𝑡ℎ, 𝑒𝑟1𝑙, 𝑒𝑟1ℎ]𝑇 , [39] 

with system states of the kinematic model’s variant  

 𝐳 = �𝑒𝑡𝑙, 𝑒𝑡ℎ, 𝛿𝑡ℎ𝑟 , 𝛿𝑡𝑓 , 𝛿𝑟1𝑑, �̇�𝑟1𝑑, 𝛿𝑟1𝑟�
𝑇

, [40] 

and the system states of the dynamic model’s variant 



 𝐳 = �𝑒𝑡𝑙 , 𝑒𝑡ℎ, 𝑣𝑡
𝑦𝑡, �̇�𝑡, 𝛿𝑡ℎ𝑟 , �̇�𝑡ℎ𝑟 , 𝛿𝑡𝑓 ,𝛿𝑟1𝑑, �̇�𝑟1𝑑, 𝛿𝑟1𝑟�

𝑇
. [41] 

     From a multitude of controllers applicable to system Eq. [37–41] a LQR state 
feedback controller with subsequent output feedback approximation originally 
proposed in (Werner et al., 2012) is chosen in this work. The main reason is that it 
allows for stating an identical design objective for both the kinematic and the dy-
namic model. In addition the same design objective can be chosen for arbitrary 
input combinations. Further this approach allows for purposive tuning based on 
weighting of tracking errors important for a particular task. 
     The first step is a standard LQR controller (Lunze, 2010) with state feedback   
 𝐮 = −𝐊𝐳, [42] 
being designed to minimize the cost function 
 𝐽 = ∫ �𝐲𝑇(t)𝐐𝐲(t) + 𝐮𝑇(t)𝐑𝐮(t)�𝑑𝑡∞

0 . [43] 

The positive semi-definite and positive definite matrices 𝐐 = �𝑞𝑖,𝑗� and 𝐑 =
�𝑟𝑖,𝑗� are chosen to be diagonal with the remaining non-zero elements stating the 
actual weights of particular inputs and tracking errors. 
     In a second step a method taken from (Lunze, 2010) is used to approximate the 
state feedback Eq. [42] by output feedback 
 𝐮 = −𝐊𝑦𝐲, 𝐊𝑦 = 𝐊𝐕𝐖(𝐂𝐕𝐖)+. [44] 
𝐕 is the matrix of closed loop system eigenvectors resulting from state feedback, 
i.e. eigenvectors of (𝐀− 𝐁𝐊), and (•)+ denotes the pseudo inverse. With this 
method 𝐊𝑦 is calculated to approximate the eigenvalues attained by state feedback 
𝐊. The diagonal weighting matrix 𝐖 provides means to allow for better approxi-
mation of particular eigenvalues. In this work that is used to solely focus on the 
closed loop eigenvalue or the pair of closed loop eigenvalues with smallest abso-
lute value, which normally (Föllinger, 1994) dominate the system’s behavior. 
 

SIMULATION RESULTS 
 
     Finally open loop system analysis and closed loop simulations are performed 
using both kinematic and dynamic model for controller design. Comparing the 
results supports choosing the appropriate model for a given task. 
 

Parameters 
 
     Table 1 summarizes the parameters used in this section. Vehicle parameters 
originate from identifications performed by (Karkee and Steward, 2010) for a 
John Deere 7930 tractor and an unsteered towed Parker grain cart. Implement 
steering actuators have been added for the following simulations with their dy-
namics approximately matching tractor steering actuator dynamics identified by 
(Karkee and Steward, 2010).  
 
Table   1. Simulation parameters with vehicle parameters based on identifi-
cations by (Karkee and Steward, 2010) for a John Deere 7930 tractor and a 
towed Parker 500 grain cart. 



 
Tractor Implement Controller 
parameter value parameter value parameter value 
𝑙𝑡𝑓  1.7 m 𝑙𝑟1𝑑  1.62 m 𝑞1,1  100/(1 m)² 
𝑙𝑡𝑟  1.2 m 𝑙𝑟1𝑓  2 m 𝑞2,2  1/(10 deg)² 
𝑙𝑡ℎ𝑟  0.9 m 𝑙𝑟1𝑟  0.1 m 𝑞3,3  400/(1 m)² 
𝑚𝑡  9391 kg 𝑚𝑟1  2127 kg 𝑞4,4  400/(10 deg)² 
𝐼𝑡  35709 kg m² 𝐼𝑟1  6402 kg m² 𝑟1,1  10/(10 deg)² 
𝐶𝛼,𝑡𝑓  220 kN/rad 𝐶𝛼,𝑟1𝑟  167 kN/rad 𝑟2,2  10/(10 deg)² 
𝐶𝛼,𝑡𝑟  486 kN/rad 𝑇𝑟1𝑑  0.1 sec 𝑟3,3  10/(10 deg)² 
𝑇𝑡𝑓  0.1 sec 𝐷𝑟1𝑑  0.7   
  𝑇𝑟1𝑟  0.1 sec   
 
     The LQR controller is parameterized by choosing weights for the diagonal 
matrices 𝐐 and 𝐑 in Eq. [43]. The weights in Table 1 are chosen to achieve proper 
implement positioning and alignment, i.e. implement lateral error 𝑒𝑟1𝑙 and imple-
ment heading error 𝑒𝑟1ℎ are considered most important. Tractor lateral error 𝑒𝑡𝑙  is 
considered less important and tractor heading error 𝑒𝑡ℎ is neglected. 
 

System Analysis 
 
     Fig. 3 depicts the open loop eigenvalues of both the kinematic and the dynamic 
variant of system Eq. [38–41]. Using the same steering actuator dynamics 
Eq. [35] and [36] results in two real eigenvalues at -10 and a conjugate complex 
pair at -7±7.141j for both variants. Tracking error differential equations originat-
ing from Eq. [31] and [32] cause two real eigenvalues at 0 in both linearized sys-
tem variants. The kinematic system’s remaining real eigenvalue results from hitch 
angle differential equation Eq. [11–13]. The remaining 4 eigenvalues of the dy-
namic model variant result from rigid body dynamics, two of those forming a 
conjugate complex pair at higher velocities as seen in Fig. 3(d). In general the 
eigenvalues close to the origin dominating the system’s behavior are very similar 
for kinematic and dynamic model variant at velocities up to 4.5 m/sec. It is worth 
noting, that due to choosing the same parameters and performing linearization 
about zero implement steering angles the eigenvalues in Fig. 3 exactly match 
those given by (Karkee and Steward, 2010) despite having a chosen a fundamen-
tally different approach to mechanics.  

(a) kinematic (b) dynamic 



(c) kinematic (d) dynamic 

Closed Loop Simulations 
 
     Finally this work presents closed loop simulation results using the non-linear 
dynamic plant model given by Eq. [28–36]. Both the kinematic and the dynamic 
model’s linearized system descriptions Eq. [37–41] are used for controller design. 
Comparing full state feedback and output feedback approximation has already 
been subject to (Werner et. al, 2012) and this work is rather focused on comparing 
the results achievable using either a dynamic or a kinematic model for controller 
design. Of course using a kinematic model is desirable due to its simple parame-
terization based on geometric properties.  
     All simulations have been performed at 4.5 m/sec tractor longitudinal velocity 
and start with tractor and implement lateral errors of 1 m each. At 10 sec a lateral 
force step is applied to the tractor and steerable implement plant model account-
ing for disturbance forces resulting from gravity on a 30 deg slope.  
     Fig. 4 shows tracking errors and steering angles for controllers based on an 
either kinematic or dynamic model description. Tractor steering and various im-
plement steering input combinations are used for those simulations. All control-
lers use the same weights in 𝐐 and 𝐑, which are chosen to achieve precise imple-
ment positioning and orientation as stated in the parameters section. The most 
notable differences between kinematic and dynamic model based controllers are 
the tendency of overshooting and the larger steering angle amplitudes in case of a 
kinematic description. The impression of a more aggressively tuned controller 
resulting from a kinematic model description is supported by comparing the con-
trollers’ matrix 2- or ∞-norms being a rough indication for the controller gain. 
Using all steering inputs �𝐊𝑦�2is 1.7 for a dynamic and 2.0 for a kinematic mod-
el. �𝐊𝑦�∞is 2.1 and 2.7 in those cases. Both kinematic and dynamic model based 
controller variants result in improved implement positioning by adding one steer-
ing actuator to the implement. Using both implement actuators is still advanta-
geous for aligning the implement with the desired path. 
     In reality some dynamic model parameters are quite uncertain or even chang-
ing. This holds for tire cornering stiffness parameters for example, because they 
summarize tire as well as ground properties. Fig. 5 shows simulation results with 
cornering stiffness parameter values changed by ±50% compared to the values 

Fig.  3. Eigenvalues of kinematic and dynamic open loop system at 4.5 m/sec 
tractor longitudinal velocity (a, b) and close-up view of eigenvalues near 
origin at several velocities (c, d).  



used for controller design stated in Table 1. Of course only controllers based on a 
dynamic model take cornering stiffness into account. The kinematic model based 
controllers neglect sliding properties right away. In both cases a decreased corner-
ing stiffness increases overshooting and tendency of oscillations. Adapting model 
parameters or controller gain to changing cornering properties might therefore be 
a necessary remedy. 
 
 
  



(a) kinematic, tracking errors  (b) dynamic, tracking errors 

(c) kinematic, steering angles  (d) dynamic, steering angles 
Fig.  4.  Non-linear dynamic model simulation results with LQR output feed-
back controllers based on an either kinematic or dynamic model using trac-
tor steering only (dashed), tractor and implement wheel steering (dash-dot), 
tractor and implement drawbar steering (dotted), and all inputs (solid). 



(a) kinematic, tracking errors  (b) dynamic, tracking errors 

 
CONCLUSION 

 
     Within this work systematic approaches to kinematic and dynamic modeling of 
a tractor towing an implement with steerable wheels and steerable drawbar have 
been presented. Dynamic modeling mainly relies on Lagrange’s equations of mo-
tion and choosing proper generalized coordinates. As a consequence both ap-
proaches are very suitable for automated derivation of equations of motion using 
computer algebra systems, which actually has been used to produce the results of 
this paper. This automated derivation allows for simple model modifications and 
easy addition or replacement of actuators. In addition a flexible path tracking con-
troller was presented, which can be used for both the kinematic and the dynamic 
model description. The controller is suitable for arbitrary steering actuator combi-
nations, is based on intuitive tuning and only requires lateral and heading error for 
tractor and implement to be measured. System analysis and closed loop simula-
tions have been performed using either a simple kinematic or a more detailed dy-
namic model for controller design. The simple kinematic model provided promis-
ing results up to at least 4.5 m/sec. For both the kinematic and the dynamic model 
based controller however adaption to a changing tire and soil properties might be 
necessary. 

Fig.  5.  Non-linear dynamic model simulation results with LQR output feed-
back controllers based on an either kinematic or dynamic model using all 
steering inputs. The simulation cornering stiffness values are 50% higher 
(dashed), 50% lower (dotted), or equal (solid) to the values used for control-
ler design. 
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