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ABSTRACT 

Precision agriculture utilizes advance technologies for improving crop 
production, enhance efficiency of farm inputs such as that of nitrogen (N) by 
quantifying and managing in-field variability and increase profit while 
reducing environmental impact. Remote sensing based indices such as 
Normalized Difference Vegetative Index (NDVI) can detect biomass and N 
variability in crop canopies. Active remote sensing tools such as Greenseeker® 
can measure NDVI using light reflected from crop canopies. The objective of 
this study was to determine if NDVI readings can consistently identify and 
classify multiple wheat genotypes into various classes. This study was 
conducted in north-eastern Colorado in 2009-2010. The NDVI readings were 
taken weekly on 24 winter wheat genotypes from March to end of June, 2010. 
The K-means clustering algorithm was used to classify NDVI and grain yield 
into three classes. Our results indicate more consistent association between 
grain yield and NDVI later in the season, after anthesis and during mid-grain 
filling stage. The results indicate that NDVI readings successfully classified 
multiple wheat genotypes across dryland and irrigated cropping systems. This 
study demonstrates the potential of using NDVI readings as a promising tool 
to differentiate and identifying superior wheat genotypes. 
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INTRODUCTION 

Precision agriculture (PA) utilizes advance technologies for improving 
crop production, enhance efficiency of farm inputs such as that of nitrogen (N) by 
quantifying and managing in-field variability and increase profit while reducing 
environmental impact. Remote sensing (RS) has become a key component of PA. 
It is used for monitoring crop development, and can provide nondestructive and 
rapid estimations of  plant biomass, leaf area index (LAI), nitrogen (N) content, 
and grain yield (Aparicio et al., 2000; Babar et al., 2006). Active remote sensing 
tools such as Greenseeker® can measure vegetation indexes such as Normalized 
Difference Vegetative Index (NDVI) and simple ratio using light reflectance from 
crop canopies. The NDVI is determined by the amount of visible red light (R) and 
near-infrared light (NIR) that is reflected from the crop canopy. The NDVI value 
is calculated using the following equation and is referred to as Red NDVI: 

  
NDVI= NIR - R / NIR + R,                                                   Eq.1 

 
where R is the reflectance in the visible red light band (wavelengths 600 to 720 
nm) from visible (VIS) light band (wavelengths 400 to 720 nm) and NIR is the 
reflectance in the near-infrared light band (wavelengths 720-1300 nm).  
 

Aparicio et al. (2000) found that the correlation between NDVI and grain 
yield increased as growth stage progressed from booting to maturity, but it was 
significant only at the maturity stage (stage 11.4 of the Feekes scale; Large, 1954) 
for durum wheat under irrigated conditions. They also observed a positive 
correlation between NDVI and grain yield at all wheat stages under rainfed 
conditions. Moreover, Reynolds et al. (2001) showed that NDVI was correlated 
with yield and biomass at the grain filling stage (11.2 stage of the Feekes scale; 
Large 1954) for spring wheat under irrigated conditions, and suggested the use of 
NDVI as a fast screening tool for grain yield. Babar et al. (2006) observed red 
NDVI and other reflectance indices has the potential to differentiate among 
genotypes at heading to grain filling stages for grain yield under irrigated 
conditions. Ma et al. (2001) also reported that NDVI could differentiate between 
high from low grain yield among soybean genotypes. Therefore, they concluded 
that NDVI can be a reliable and fast index for screening soybean genotypes and 
estimating grain yield under irrigated conditions. However, review of the 
literature indicates no previous study was conducted on classification of winter 
wheat genotypes for grain yield based on the relationship between grain yield and 
NDVI readings  

 
This study’s hypothesis is that it is possible to use NDVI measured by 

active sensor as a tool to differentiate and classify multiple wheat genotypes. The 
objective of this study was to determine if NDVI readings can consistently 
identify and classify multiple wheat genotypes. 

 
 
 
 



MATERIALS AND METHODS 

Study sites 

           This study was conducted in Northeastern Colorado in 2009-2010 winter 
wheat growing season. The study was located at the USDA-ARS Limited 
Irrigation Research Farm, near Greeley, Colorado (40˚ 26΄ 58.87˝ N and -104˚ 
38΄22.56˝ W). The study site was classified as Otera sandy loam (coarse –loamy, 
mixed superactive, calcareous, mesic Aridic Ustorthents) soil series with 0 to 3 
percent slopes (Crabb et al. 1980).The experimental design was a split plot with 
three replications. Twenty four winter wheat genotypes were planted in 
experimental plots of 3.7 m x 1.4 m in size with 6 rows and a row spacing of 22.8 
cm. Wheat was planted on October 11, 2009 at a rate of 197,600 seeds ha-1. Based 
on soil analysis, nitrogen fertilizer was applied prior to planting at a rate of 84 kg 
N ha-1 as Urea (46-0-0) and phosphorous fertilizer was applied at a rate of 56 kg 
P2O5 ha-1 as Mono-Ammonium Phosphate (11-52-0).  

Active remote sensing based NDVI measurements were acquired using 
Greenseeker® hand held optical sensor (NTech Industries Incorporation, Ukiah, 
California, USA). The sensor is designed to be held 81 cm to 122 cm above crop 
canopy (NTech Industries, Inc., 2005). The principles of operation of the 
Greenseeker® were illustrated in Inman et al. (2005). Measurements were taken 
holding Greenseeker® unit about 90 cm above the canopy and walking in the 
center of each wheat plot. Each plot was sensed for approximately two to five 
seconds, collecting 20 to 50 NDVI readings from each experimental plot. All 
reflectance measurements were acquired weekly between 10:00 am to 2:00 pm 
during cloud free days from early spring crop growth stage (March 29, 2010) 
(between 3 to 4 stages of the Feekes scale; Large 1954) to after mid grain filling 
wheat growth stage (June 21, 2010) (Fig.1). Statistical analysis (ANOVA) was 

Figure 1.Collecting NDVI readings using Greenseeker® hand held optical sensor. 
Plot boundaries are highlighted with dashed lines. 

performed in R statistical software (R Development Core Team., 2010) to 
determine differences among twenty four wheat genotypes based on grain yield 
and NDVI readings. The K-means clustering algorithm method was used to 



classify grain yield and NDVI into three classes (Low, Medium and High). The 
NDVI values were classified for three periods: early-season (stages 3-4 at Feekes 
scale), mid-season (stages 6-10.3 at Feekes scale), and late-season (stages 10.5-
11.2 at Feekes scale; Large 1954). Grain yield classes were compared against 
NDVI classes to build contingency tables for each of these three periods. Kappa 
statistics were calculated for each contingency table to measure the agreement 
between grain yield and NDVI. 

RESULTS AND DISCUSSION 
 

NDVI Readings and Effects Growth Stages 
 

Statistical analysis results from ANOVA showed significant differences 
among twenty four wheat genotypes (p < 0.001) based on NDVI readings. 
Differences were observed at 11 dates and at different growth stages from early 
spring, jointing, anthesis, and to mid grain filling under Irrigated and dryland 
conditions. As expected, the NDVI values were low at the early winter wheat crop 
growth stages (March 29th). The mean NDVI values were 0.21 and 0.20 under 
dryland and irrigated conditions (Fig. 1.2). The NDVI values gradually increased 
with crop growth stages and reached a plateau in midseason, between jointing to 
anthesis growth stages (between 6 to 10.5 stages of the Feekes scale; Large 1954).  
 The mean NDVI values at mid-season were of 0.82 and 0.90 respectively for 
dryland and irrigated experiments. The NDVI values decreased at the end of the 
season (in June, at anthesis to mid grain filling crop stages) (between 10.5 to 11.2 
stages of the Feekes scale; Large 1954). The mean NDVI values at late season 
were of 0.31 and 0.59 on respectively for dryland and irrigated experiments as 
illustrated in Fig.1.2.  

Figure1.2. Mean NDVI values for individual winter wheat genotype selected 
across the growing season under irrigated and dryland conditions for 11 dates for 
NDVI readings. Critical growth stages are indicated on the graph as E=early 
spring, J= jointing, H= heading, A= anthesis, and MG= mid grain filling. 



 The results indicate that the NDVI values consistently increased in early 
season with increasing crop growth stages. The NDVI values reached a plateau in 
midseason and decreased at the end of the crop growing season. The NDVI values 
decreased from anthesis to mid grain filling because reflectance from red band 
increased and reflectance from NIR band decreased. Low NDVI values could be 
attributed to crop vegetation under stress and reduction in the amount of green 
biomass with the progression of crop growth stages from anthesis to mid grain 
filling stage (Aparicio et al., 2000). Number of studies has reported similar 
findings with NDVI reflectance from wheat genotypes (Babar et al., 2006; 
Aparicio et al., 2000). The overall results indicate that active sensor based NDVI 
readings can differentiate among multiple wheat genotypes at many growth stages. 

  
Comparison between NDVI and yield classification 
 
Quantitative Approach  
              The quantitative clustering approach depend on K-means clustering 
algorithm to classify NDVI and grain yield data into three NDVI and yield classes 
(low, medium, and high) and  it is described in details by Hartigan and Wong 
(1979). Table 1 presents an error matrix, also referred to as Contingency table that 
compares classifications among yield classes and NDVI classes for all wheat 
genotypes in this study. Kappa statistic was used in this study that measures the 
classification accuracy and assessment agreement between classifications. Kappa 
statistic gives precise measure of how well the classifications are compared to a 
chance agreement or random classification (Khosla et al., 2008). It ranges from 1 
being perfect agreement to 0 being no agreement (Landis and Koch, 1977) as 
presented in Table 1.2. 
 
 
Table. 1. Contingency table of the agreement between grain yield classes† and 
NDVI classes† for dryland.  
 
  Early season Mid-season    Late season  

 ----------------------------------NDVI class------------------------------- 

Grain 
yield class 

Low Medium High Low Medium High Low Medium High 

----------------------------Number of agreement------------------------ 

Low 4 2 0 3 3 0 4 1 1 
Medium 5 5 0 1 7 2 2 7 1 

High 2 3 3 0 3 5 0 1 7 
†Grain yield classes and †NDVI classes were determined by used K-means 
clustering algorithm (k=3 clusters)  
 
The guidelines to interpret Kappa Statistics are presented in Table 1.2, and the 
kappa statistic results for this study are presented in Table 1.3. The results from 
the quantitative clustering approach indicate that classification accuracy between 
NDVI and grain yield ranged from (0.25 to 0.61), which would indicate a fair to 
substantial agreement. 



Table. 1.2. Guidelines to interpret kappa statistics according to (Landis and Koch, 
1977). 

Kappa statistic Strength of agreement  
< 0 poor 

0-0.20 slight 
0.21-0.40 fair 
0.041-0.60 moderate 
0.61-0.80 substantial 
0.81-1.0 almost perfect 

 
The classification accuracy at late season was the highest compared to that at mid-
season and early season under dryland conditions. Whereas, Kappa statistic 
ranged from (0.10 to 0.21) under irrigated conditions indicated poor to fair 
agreement (data not shown). Similar results have been reported in ( Inman et al., 
2008) five out six sites had fair to substantial between NDVI and relative yield. 

  
Table. 1.3. Results of kappa statistic for error matrix (contingency tables) of grain 
yield classes and NDVI classes under dryland conditions. 

Grain yield class vs. 
NDVI class 

Overall 
accuracy 

(%) 

Kappa 
statistic 

Strength of 
agreement 

Early season 50 0.25 fair 
Mid-season 63 0.40 fair 
Late season 75 0.61 substantial 

 
Overall, based on statistical K-means clustering approach the results show 

substantial agreement between NDVI and grain yield at late season, and only a 
slight to fair agreement at early season and at mid-season. The results from kappa 
statistic suggest that classification accuracy between NDVI and grain yield at late 
season was better than that at mid-season and early season. Our results agree with 
findings of (Babar et al., 2006) that spectral indices such as NDVI have potential 
to differentiate genotypes for their grain yield at late season under irrigated and 
rainfed conditions. In addition, these results are consistent with Ma et al., (2001). 
They observed that NDVI can differentiate between high and low grain yield 
among soybean genotypes and provide fast index for screening and ranking 
soybean genotypes under irrigated condition.  
 

In this study overall classification accuracy percentage between grain 
yield and NDVI was better under dryland condition than under irrigated condition. 
The NDVI variability due to the different water status in two environments and 
the water is considred as a limiting factor for growth and grain yield wheat 
genotypes with uniform N rate and the same soil in Colorado. The study 
demonstrates the potential of using active sensor based on NDVI readings as a 
promising tool to classify and identifying superior wheat genotypes. 
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