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Abstract.  
Soybeans are a crucial crop for global food security, yet climate instability, particularly water 
stress (WS), is a major concern. This study aims to explore this constrain via an in-silico 
approach to characterize water stress and spatial patterns and their frequency within ENSO 
events; and evaluate climate-adaptative strategies (planting dates and maturity groups) 
associated with ENSO events to mitigate crop failure risk and maximize yield. With this aim, 
APSIM Next Generation was employed to simulate three widely used maturity groups (MG, 5.0, 
5.8, and 6.4) and eight planting dates (from October 5th to January 20th) over 30 years across 
187 locations in RS, Brazil. Four regions were delineate: Northeast (NE), North (N), Central (C), 
and Southwest (SW) and four WS patterns were defined (no stress, early stress, late stress, 
and whole season stress). Water stress patterns varied across regions, with the SW region 
experiencing more frequent and severe stress (up to 50% of whole season stress during La 
Nina), with an overall WS yield reduction up to 2 Mg ha-1 (~50%). The MG 5.0 resulted in 
higher failure risk across all regions. Early planting dates resulted in the highest yield variability 
(up to 5 Mg ha-1). Adaptive management strategies, such as optimizing planting dates and 
maturity groups, are crucial to mitigate yield penalties and failure risk. 
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Introduction 
Brazil plays a critical role as the principal soybean producer in the world (FAO, 2024). In this 
context, the state of Rio Grande do Sul (RS, located in the southern part of Brazil) is particularly 
noteworthy, contributing to roughly 15% of Brazil's total soybean planted area (CEPEA, 2024; 
CONAB, 2024). However, a major concern in RS is the large interannual yield variability, mainly 
attributed to climate instability (Sentelhas et al., 2015). Rio Grande do Sul is especially vulnerable 
to water stress as most farming systems are conducted under dryland conditions (~98%; Martins 
et al., 2021). Therefore, seasonal variations in precipitation and temperature significantly impact 
soybean yields, underscoring the urgent need for developing climate-adaptative management 
strategies (Kukal and Irmak, 2018; Lobell et al., 2011; Mourtzinis et al., 2015; Rezaei et al., 2023). 
This context delineates an evident research gap in understanding the effect of weather patterns 
and their influence on soybean production (Ray et al., 2015). Considering this, the El Niño 
Southern Oscillation (ENSO) has profound effects on weather patterns globally, including 
Southern Brazil (Cai et al., 2020; Cirino et al., 2015; Lin and Qian, 2019; Nóia Júnior et al., 2020; 
Nóia Júnior and Sentelhas, 2019), and can be used to predict rainfall and temperature variation 
(Iizumi et al., 2014; Ropelewski & Halpert, 1987). Particularly in Brazil, numerous studies have 
documented the adaptation of crop management practices to prevailing environmental conditions, 
employing crop modeling as a foundational tool for assisting the farming decision-making process 
(Battisti et al., 2020b, 2017; Battisti & Sentelhas, 2019; Figueiredo Moura da Silva et al., 2021; 
Peterson et al., 2020). However, to the extent of our knowledge, limited efforts have been made 
to connect seasonal stress patterns with the ENSO phases and their management implications.  
This study aimed to calibrate and validate soybean varieties using the APSIM model, across a 
wide range of environmental conditions. The research utilized two independent datasets to 
address the challenges of water stress and climate variability on soybean production in RS, Brazil. 
The specific objectives were to: 1) characterize water stress and spatial patterns, and their 
frequency within ENSO events using an in-silico approach, and 2) explore planting dates and 
maturity groups as climate-adaptive strategies associated with ENSO events to mitigate crop 
failure risk. 

Methods 

This publication is an adaptation of Hintz et al. (under preparation). 

Soybean growth simulation 
Simulations covered the three soybean cultivars across eight planting dates (15 days apart each 
one - from October 5th to January 20th), representing the typical sowing window for RS (CONAB, 
2022), and to cover the environmental variability within the area, a point-grid was set targeting 
200 points equally spaced from each other to compose the locations. We removed 13 locations 
due to the lack of either soil or weather information, ending up with 187 locations set up in a grid 
pattern separated by 39 km in longitude and 33 km in latitude. The simulations were performed 
setting the sowing density at 30 plants m-2. Daily precipitation was downloaded from CHIRPS 
(Funk et al., 2015), maximum and minimum temperature, and radiation were downloaded from 
NASAPOWER, and soil data was retrieved from and SoilGrids (“ISRIC — World Soil Information”; 
Poggio et al., 2021; Turek et al., 2023; Pott et al., 2022). We chose CHIRPS over NASAPOWER 
for precipitation data, given its superior resolution. At the start of the simulation, wheat residue (4 
Mg ha-1) was added as soil cover, reflecting the widespread adoption of no-till farming in the 
region (Conab, 2024; Fuentes-Llanillo et al., 2021). 

Water stress and environmental type classification 
The model was set to simulate daily water stress (WS), accumulated thermal time, phenology, 
and seed yield. The WS was assessed from the ratio between the potential soil water supply and 
the crop transpiration demand (Robertson et al., 2002). The WS factor was averaged for every 
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100 °Cd of thermal time, following Chapman et al. (2000), with the early grain filling phenological 
stage centered as the reference, therefore, negative values of thermal time represent 
phenological states prior early grain filling while positive values represent phenological stages 
after early grain filling. The water stress patterns were clustered employing simulations for the 
whole region and the historical weather serie.  

Spatial clustering 
Spatially homogeneous regions with similar yield responses to planting dates and MG. Mean yield 
and its coefficient of variation were computed to quantify central tendency and dispersion, 
respectively, and used to assess relative variability for each combination of location, planting date, 
and cultivar. The Spatial Fuzzy c-means (SFCM) algorithm from the geocmeans package 
(Jeremy, 2023), was employed. The SFCM algorithm was parameterized with four clusters (k = 
4), a fuzziness coefficient of 3 (m = 3), and a spatial penalty parameter of 2 (alpha = 2). The 
algorithm was set to perform data standardization internally and utilized a median-based lag 
method to incorporate spatial dependency. All the steps above were performed using the 
statistical programming language R (R Core Team, 2024). 

El Niño Southern Oscillation 
The crop seasons were classified into El Niño Southern Oscillation phases, based on the National 
Oceanic and Atmospheric Administration (NOAA). This classification employs the Pacific Ocean 
sea surface temperature anomaly (SSTA) in relation to the normal in the El Niño 3.4 region. A 
given growing season was classified as El Niño when the mean SSTA is equal to or above 0.5 
°C for the period between October and April. When the SSTA was equal to or below -0.5 °C for 
the period between October and April it was considered La Niña. A Neutral year was characterized 
when the SSTA remained between -0.5 and 0.5 °C. 

Failure risk 
The failure risk was established by the percentage of simulations that yielded less than the 
economic break-even soybean yield in a given scenario. The economic break-even yield was 
estimated by averaging the ratio between the cost of production (985 $ ha-1) and the grain average 
price (441 $ Mg-1) of the respective season for the last five seasons (2019/2020 – 2023/2024) 
(CONAB, 2024).  

Statistical Analysis 
A linear mixed-effects model was applied to assess the management impact on yield. The 
interaction among planting date, cultivar, and ENSO were treated as fixed effects, while the 
season with the location nested within the season was treated as the random effect. The crop 
yield was the response variable. This model was fitted using the lme4 R package (Bates et al., 
2015). To ensure the validity of our model, the standardized residuals were compared against the 
fitted values to check for the assumptions of normality and equal variance (Zuur et al., 2009). An 
ANOVA test with type III sum of squares was employed to test treatment effects, through the car 
package (Fox and Weisberg, 2018). All steps of the statistical analysis were carried out using the 
R software (R Core Team, 2024).  

Results 

Spatial clustering, water stress, environmental type classification, and soybean yield 
dynamics 
Four distinct water stress (WS) patterns were identified: no stress (WS factor above 0.75), early 
stress (WS factor around 0.5 at 500 degree-days before flowering), late stress (WS factor around 
0.5 at flowering), and whole-season stress (WS factor below 0.5 from 400 degree-days before 
flowering to 200 degree-days after flowering) (Fig. 1). Whole-season stress led to a significant 
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reduction in seed yield, up to 50% (~2 Mg ha-1) compared to no stress (~4 Mg ha-1). Both early 
and late stress conditions resulted in intermediate average yields of around 3 Mg ha-1 (Fig. 1). 
Based on yield performance, four regions were classified: Northeast (NE), North (N), Central (C), 
and Southwest (SW) (Fig. 1). The average seed yield was 4.1, 3.4, 3.0, and 2.7 Mg ha-1, with a 
coefficient of variation (CV) of 25%, 26%, 29%, and 33% for the regions NE, N, C, and SW, 
respectively (Fig. 1). The most productive region, NE, had the highest frequency of the no stress 
pattern (~66%) and only 5% occurrence of whole-season stress in simulations. Conversely, the 
least productive region, SW, experienced whole-season stress in one-third of the simulations. 

 
Figure 1. Soybean water stress patterns, clustered regions, and yield response. Water stress patterns (top-right). The 
relationship between water stress factor and crop development (thermal time). The vertical dashed line represents the 

early grain-filling phenological stage; Soybean yield (bottom-right). The distribution of soybean yield under varying water 
stress conditions; Clustered regions (left). The pie charts on the map, varying in color and size, represent the relative 

frequency of four categorized water stress patterns: no stress (green), early stress (purple), late stress (orange), and whole 
season stress (red) within each region; (C) distribution of soybean yields across the Southwest (SW), Central (C), North 

(N), and Northeast (NE) regions. Adapted from Hintz et al., (under preparation). 

Water stress and ENSO frequency 
Over the past three decades, the average seasonal ENSO phases have been distributed as 
follows: 41% La Niña, 31% Neutral, and 28% El Niño. Although El Niño events were the least 
frequent, they were characterized by a predominant no-stress pattern across regions, with 
frequencies of 90%, 81%, 56%, and 45% in the NE, N, C, and SW regions, respectively. In 
contrast, La Niña events were associated with a higher frequency of whole-season stress in the 
C (35%) and SW (50%) regions. During Neutral events, under stress scenarios, the probability of 
late stress was higher compared to whole-season and early stress. The NE region exhibited a 
prevailing pattern of no stress across all ENSO phases (over 70%), with whole-season stress 
rarely occurring (2%). In the N region, most Neutral seasons featured either no stress (40%) or 
late stress (37%). 
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Figure 2. Frequency of water stress patterns across four regions during La Niña, Neutral, and El Niño phases. The heatmap 
conveys the percentage of stress occurrences, with color intensity indicating frequency. Adapted from Hintz et al., (under 

preparation). 

Failure risk  
The calculated economic break-even yield was 2.2 Mg ha-1. In the C region, the average failure 
risk probabilities during El Niño, Neutral, and La Niña events were 13%, 16%, and 30%, 
respectively, while the N region had lower probabilities at 7%, 8%, and 12%. The SW region 
presented higher probabilities of 21%, 20%, and 48%. Conversely, the NE region maintained a 
consistently low failure chance of less than 3% for all ENSO phases. ENSO led to a ~15% and 
30% increase in crop failure risk in the C and SW regions during La Niña events, compared to 
Neutral and El Niño seasons, which followed similar failure risk patterns (Fig. 3A). The shortest 
maturity group (MG) resulted in the greatest failure risks in all regions during La Niña events, 
reaching 40% to 50% failure risk in the SW and C regions. In comparison, MGs 5.8 and 6.4 
reported a reduced failure risk by approximately 10% to 15%. These two MGs showed similar 
failure risks across regions and ENSO phases (Fig. 3B). Regarding planting dates, there was an 
increasing failure risk for the C and SW regions as planting was delayed during El Niño and 
Neutral events, peaking in late January. In contrast, the NE region's failure risk remained flat and 
under 10% for all planting dates. La Niña events differed from Neutral and El Niño events mainly 
during early planting dates, resulting in higher failure risk compared to these events, reaching 
over 50% risk in the SW region for October planting dates, for example (Fig. 3C). 
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Figure 3. Comparative descriptive analysis of crop failure risk across different ENSO phases (colors): (A) Probability 

density functions for the four regions (panels) showing risk distribution under El Niño, Neutral, and La Niña conditions; (B) 
Percentage of crop failure associated with maturity groups (MGs) in each region; (C) Percentage of crop failure associated 

with planting dates. Adapted from Hintz et al., (under preparation). 
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Discussion 
This study offers insights for developing targeted strategies to mitigate soybean failure risk and 
improve productivity in regions vulnerable to WS in RS, Brazil. Although ENSO phases and 
planting dates were studied in Southern Brazil (Nóia Júnior et al., 2020), their interaction with 
MGs has not been explored yet. Since there are high uncertainties regarding in-season weather 
forecasts by the time management decisions are made by farmers, the integration of advanced 
weather forecasting and crop modeling tools can offer real-time insights and enhance decision-
making processes. This research contributes to global efforts to enhance crop resilience by 
characterizing WS patterns in the face of climate uncertainty across several crops ; Battisti and 
Sentelhas, 2019).  
Globally, climate variability is responsible for approximately a third of the yield variability. In 
important areas of the global breadbasket, it can account for up to 60% of the yield variability (Ray 
et al., 2015). Similar to findings by Sentelhas et al. (2015) in the same region, whom reported an 
average yield gap for soybeans of 1.6 Mg ha-1 due to water deficit, our study featured yield 
penalties up to 2 Mg ha-1 depending on the stress timing and severity. In this sense, environmental 
characterizations in regions highly affected by WS are crucial for breeding programs and future 
genotype-environment recommendations (Cooper et al., 2022; Resende et al., 2021). The results 
from our study point out that there is a regional yield variability across RS, being the SW the more 
susceptible to prolonged stress events (whole season stress, especially during La Nina), and the 
NE experiencing water stresses hardly ever. The yield penalizations due to La Nina phases 
towards the south of RS were also underscored by Nóia Júnior et al. (2020).  
Effective risk management is crucial for agricultural decision-making, yet the adoption of 
quantitative predictive tools remains low due to barriers in knowledge transfer (Rose et al., 2016), 
and insufficient consideration of risk exposure and inherent uncertainties within production 
systems (Marra et al., 2003). The interactions among planting dates, cultivar maturity, and 
different ENSO phases present a strategic opportunity to reduce failure risk and mitigate yield 
penalties (Boer and Surmaini, 2020; Hammer et al., 2014; Ramirez-Rodrigues et al., 2014). 
Optimal maturity groups and planting dates vary with weather scenarios (Di Mauro et al., 2022; 
Nóia Júnior et al., 2020; Nóia Júnior and Sentelhas, 2019; Videla-Mensegue et al., 2024), 
underscoring the need for adaptive management strategies. For instance, Di Mauro et al. (2022), 
demonstrated that longer maturity groups were advantageous during La Niña phases in a similar 
region. Specifically, in the southernmost regions (SW and C), selecting longer maturity groups 
significantly reduced failure risk by approximately 15% during La Niña events. This highlights how 
variability in rainfall and temperature can substantially impact soybean yields (Ferreira and Rao, 
2011). 

Conclusions  
Water stress was responsible for soybean yield penalties up to 2 Mg ha-1. The NE region hardly 
ever experienced water stresses, while the SW region was more susceptible to prolonged stress 
events. Planting date and maturity group management adjustments resulted in over 15% 
reduction in crop failure. These findings offer valuable insights for developing targeted strategies 
to enhance soybean productivity and stability, thereby increasing the resilience of agricultural 
systems in the face of climate uncertainties. 
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