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Abstract.  
Accurate and efficient in-season diagnosis of potato nitrogen (N) status is key to the success of 
in-season N management for improved profitability and environmental protection. Sensor-based 
approaches will support more timely decision making compared to plant tissue-based 
approaches. SPAD-502 is a commonly used sensor for potato N status diagnosis. Dualex 
Scientific+ is a newer leaf chlorophyll meter and measures leaf chlorophyll using the transmittance 
characteristics of chlorophyll in wavelengths resistant to measurement saturation and the 
screening effect of polyphenols (i.e. flavanols and anthocyanins) on chlorophyll fluorescence. 
Dualex is expected to outperform SPAD when used independently, but the extent and context of 
such improvements has not been systematically evaluated, especially for potato. The objectives 
of this study were to 1) compare the Dualex fluorescence sensor and SPAD meter for potato N 
status diagnosis by predicting petiole nitrate-N concentration and N nutrition index (NNI), and 2) 
evaluate the effect of fusing ancillary information with sensor data on improving N status 
diagnosis. Plot-scale field experiments were conducted at the Sand Plain Research Farm in 
Becker, MN USA in 2018, 2019, 2021, and 2023 involving several varieties and N fertilizer 
treatments. Plant samples (i.e. petioles and whole plants) and leaf sensor data were collected 
multiple times at key growth stages each year. The on-site weather station provided daily weather 
information. The benefit of additional readings in the Dualex sensor was marginal. The N status 
indicators were predicted much better using the data fusion approach, where the sensor 
difference was greatly diminished. Random forest regressor predicted the petiole nitrate-N 
concentration and NNI with R2 of 0.88 and 0.63, respectively. Upgrading sensors might be a valid 
strategy in situations without access to other ancillary data, but developing models using an 
available sensor and ancillary data is generally more effective in estimating in-season potato N 
status. 
Keywords.   
In-season nitrogen status diagnosis, Leaf sensor, SPAD, Dualex, Data fusion, Machine learning, 
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Introduction 
There has been an increasing social pressure to better manage nitrogen (N) fertilizer application 
in production agriculture to conserve resources and protect the environment. Split N fertilizer 
application is an effective way to improve N use efficiency (NUE), especially in wet years, and 
this is particularly important for potatoes (Solanum tuberosum L.) with potentially low NUE due to 
their shallow roots and cultivation on coarse-textured soils (Bailey, 1999; Errebhi, Rosen, Gupta, 
et al., 1998; Phene & Sanders, 1976; Rosen & Bierman, 2008). Petiole analysis has been the 
most popular plant tissue analysis to guide in-season split N fertilizer applications (Errebhi, Rosen, 
& Birong, 1998; Rosen & Bierman, 2008; Zhang et al., 1996). Some studies are critical about the 
usefulness of petiole analysis due to its high variability (MacKerron et al., 1995). Nitrogen nutrition 
index (NNI) is another, more holistic N status indicator and is useful for diagnosing N status on 
crops including potatoes (Greenwood et al., 1990; Lemaire et al., 1984). However, NNI is not a 
practical approach as sampling and analyzing the whole plant biomass and N concentration is 
generally required. Whether petiole analysis or NNI, destructive sampling and tissue analysis is 
expensive and, thus, better to be avoided. 
Radiometric sensors are useful for predicting plant N status using transmissive and reflective 
properties of plants. One of the most common handheld sensors for plant chlorophyll (Chl) 
estimation is SPAD-502 (SPAD; Konica Minolta, Tokyo, Japan) (Gianquinto et al., 2004). SPAD 
operates at wavelengths around 650 nm and 940 nm and outputs a relative Chl reading. Dualex 
Scientific+ (Dualex; METOS® by Pessl Instruments, Weiz, Austria) is a newer leaf chlorophyll 
meter and uses both leaf transmittance and chlorophyll fluorescence to measure Chl and Flavanol 
(Flav), which is a N stress induced substance. Cerovic et al. (2012) discussed the potential 
improvement of Dualex in N status diagnosis by mitigating measurement saturation through using 
710 nm and 850 nm and the addition of Flav. However, the potential benefit of upgrading the leaf 
sensor has not been fully investigated. It is also important to compare the effectiveness of these 
leaf sensors in the presence of available ancillary information, as the data fusion approach using 
machine learning can diminish sensor differences (Wang et al., 2023). Therefore, the objectives 
of this research were to 1) compare the Dualex fluorescence sensor and SPAD meter for potato 
N status diagnosis by predicting petiole nitrate-N concentration and NNI, and 2) evaluate the 
effect of fusing ancillary information with sensor data on improving N status diagnosis and 
reducing sensor differences. 

Materials and Methods 

1. Study Sites 
The studies were conducted at the Sand Plain Research Farm, Becker MN, USA. This research 
farm was located at 45° 23’ N, 93° 53’ W and characterized as a Hubbard loamy sand (sandy, 
mixed, frigid Entic Hapludolls) until 2018 and was relocated to 45° 20’ N, 93° 49’ W in 2019 and 
characterized as a Hubbard (Sandy, mixed, frigid Entic Hapludolls)-Mosford (Sady, mixed, frigid 
Typic Hapludolls) complex sand soil. The average air temperature ranged from 18.1 to 20.4°C 
with 291.8 to 517.0 mm total precipitation during the growing seasons according to the on-site 
and nearest regional airport weather station data. Soil samples were collected at the start of the 
season at 0-0.15 m and 0-0.6 m for standard macro- and micro-nutrients and sent to the Soil 
Testing and Research Analytical Laboratory at the University of Minnesota. The initial soil pH 
ranged from 6 to 7.4. The initial soil organic matter content and total N concentration were low at 
1.2 to 2.2% and 1.7 to 11.7 ppm, respectively. All of the cultural practices followed the regional 
recommendations. The precipitation was supplemented using irrigation based on the checkbook 
method on a fixed schedule (Steele et al., 2010). 

2. Study desgins and treatments 
A total of four studies were conducted in 2018, 2019, 2021, and 2023.  
Study 1 involved four cultivars (i.e. Clearwater Russet, Ivory Russet, Russet Burbank, and 
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Umatilla Russet) and three N treatments (i.e. 134.5, 269.0, and 403.5 kg N/ha). Study 2 involved 
the same five cultivars (i.e. Clearwater Russet, Lamoka, MN13142, Russet Burbank, and Umatilla 
Russet) and the same N treatments. The between-row spacing was 0.9 m and the within-row 
spacing was 0.23 m for Ivory Russet and 0.3 m for all of the other cultivars. Diammonium 
Phosphate (DAP; 18-46-0) was banded at planting at the 44.8 kg N/ha rate. Controlled-release 
fertilizer, Environmentally Smart Nitrogen (ESN; Nutrien, Canada; 44-0-0), was side-dressed and 
hilled in at emergence at varying N rates of 89.7, 179.3, and 269.0 kg/ha. The two higher-rate N 
treatments also received four fixed splits of 11.2 or 22.4 kg N/ha as urea ammonium nitrate (UAN; 
28-0-0) after emergence. The UAN applications were immediately followed by irrigation simulating 
fertigation. Both Studies 1 and 2 used the split-plot design with three replications. More details of 
these two studies were reported (Gupta, 2018; Gupta & Rosen, 2019). 
Study 3 involved two cultivars (i.e. Hamlin Russet and Russet Burbank) and five N treatments 
(i.e. 44.8, 89.7, 179.3, 269.0, and 358.7 kg N/ha). The between-row spacing was 0.9 m and the 
within-row spacing was 0.3 m for both cultivars. At planting, 44.8 kg N/ha was band-applied using 
DAP and the reminder of N was side-dressed and hilled in using ESN. Study 4 used the same 
two cultivars and five N treatments. The within-row spacing for Hamlin Russet was adjusted to 
0.23 m. In addition to the five N treatments, four precision N management (PNM) treatments and 
three irrigation treatments were included. One of the PNM treatments was a fixed split treatment, 
where 89.7 or 179.3 kg N/ha was applied for Hamlin Russet or Russet Burbank using the above-
mentioned design and four fixed splits of 16.8 kg N/ha were applied simulating fertigation after 
emergence. The total N rates for the fixed split treatments were 179.3 and 246.6 kg N/ha for 
Hamlin Russet and Russet Burbank, respectively.  Other three PNM treatments were designed 
similarly except the decision on the post-emergence split N applications were based on leaf 
sensor-based plant N status diagnosis. The total N rates for Hamlin and Russet Burbank in these 
treatments ranged from 106.5 to 151.3 kg N/ha and from 196.1 to 224.2 kg N/ha. Three irrigation 
treatments included 60, 80, 100% of the irrigation rate determined by the checkbook method. The 
total accumulated moisture contents (i.e. precipitation + irrigation) were 169.9, 189.0, and 208.0 
mm for 60, 80, and 100% irrigation treatments. For Studies 3 and 4, a split-plot design was used 
with three replications. The irrigation treatments in Study 4 were included as blocks without 
replications. More details of these two studies can be found in Miao et al. (2022, 2024). 

3. Plant samples and sensor data collection 
From the beginning of tuber initiation stage to the beginning of senescence, plant samples and 
leaf sensor data were collected two to four times. Studies 1 and 2 had four plant sampling and 
sensor data collection events on 6/26, 7/10, 7/18, and 7/31 or 6/26, 7/11, 7/24, and 8/7. There 
were two and three events for Studies 3 and 4 on 6/29 and 7/27 or 6/22, 7/20, and 7/27. As plant 
samples, twenty petioles on the fourth leaves from the shoot apex and three whole plants (i.e. 
shoot and tubers) were collected. Petioles were dried, ground, and water-extracted for NO3-N 
concentration. The fresh weight of three whole plants were measured on site and a sub-sample 
was weighted fresh, dried, and weighted again for percent dry matter determination. The dried 
sub-samples were also ground and analyzed for N concentration. Plot-wise dry biomass was 
determined by extrapolating the product of the three-plant fresh weight and the percent dry matter 
using the spacings. Twenty or thirty SPAD meter readings were collected from the fourth leaves 
of the shoot apex and averaged on a plot basis. Similarly, fifteen Dualex meter readings were 
collected on the top fully expanded leaves and averaged on a plot basis. 

4. Statistical analysis 
4.1 Data imputataion and feature  

Initial soil test results were sometimes absent for some replications. These replications received 
the study-wise average values of the initial soil test results. N fertilizer was applied at various rates 
and timings, so the amount of N fertilizer that had been applied until the day before sampling and 
sensing events were summed up and called as-applied N rates. The weather data was used to 
calculate growing degree days (GDDs) and total moisture as follows: 
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 GDDs = (Tmax + Tmin) / 2 – 7°C where GDDs > 0 (1) 
 Total moisture = Precipitation + Irrigation (2) 
where Tmax and Tmin are daily maximum and minimum temperatures, and 7°C is the base 
temperature for potatoes (Worthington & Hutchinson, 2006). The GDDs and total moisture were 
summed up to the day of sampling and sensing events and called accumulated GDDs and total 
moisture. Lastly, NNI was calculated on a whole plant basis as the ratio of plant N concentration 
to critical N concentration (Ncr) (Lemaire et al., 1984). Ncr is defined as the plant N concentration 
required to achieve the maximum plant biomass. Ncr is characterized by an allometric negative 
power function: 
  Ncr = a(W)-b  (3) 
where Nc is critical N concentration in g/100g dry matter or %, W is dry weight biomass in Mg/ha, 
and a and b are estimated parameters. The parameter a represents the N concentration when W 
is 1 Mg/ha, while the parameter b describes the dilution of N concentration with increase in plant 
dry mass. According to Bohman et al. (2023), the parameters a and b were set to 4.75, 0.585; 
4.74, 0.566; and 4.75, 0.588 for Clearwater Russet, Russet Burbank, and Umatilla Russet. All of 
the other cultivars used 4.75 and 0.582 for parameters a and b as specified for Minnesota. The 
total number of observations resulted in 458. 
4.2 Feature and model selection 

Simple relationships between the N status indicators of interest (i.e. PNN; petiole nitrate-N 
concentration and NNI) and leaf sensor readings were explored using the whole dataset first. 
Among linear, log, power, exponential, and polynomial regressions, the best fitted regression was 
selected for further analysis using partitioned datasets. The data were partitioned into training and 
testing datasets with an 8:2 ratio. All models were validated in the testing dataset after calibrated 
in the training dataset. Apart from the simple regression, multiple linear regression (MLR), 
Random Forest (RF) regression, and Extreme Gradient Boosting (XGBoost) regression were 
used to predict the N status indicators. In MLR, two approaches were used; 1) using only leaf 
sensor readings, and 2) using all of the available variables. For feature selection, the forward 
selection algorithm by the regsubsets function in the leap package in R was used. Cultivar names 
were converted to dummy variables. RF and XGBoost regressions were selected due to their 
compatibility with categorical variables and their ability to balance the variance bias tradeoff, 
especially in a small dataset. Important features were selected using the permutation-based 
importance metric called Boruta in R. The tuned hyperparameters included the number of 
variables used at each node, the number of trees, and the minimum number of observations in a 
leaf for RF regression. In addition to these hyperparameters, the sample size used for building 
each tree, learning rate, and lambda (i.e. L2 regularization term) were tuned in XGBoost 
regression. These hyperparameters were tuned using Bayesian optimization in a 5-fold cross 
validation. Mean absolute error was used as the metric for selecting the best set of 
hyperparameters considering the high variability of PNN concentration. Expected improvement 
with a tradeoff of 0 was the choice of acquisition function. To evaluate model performance, the 
coefficient of determination (R2), mean absolute error (MAE), and root mean square error (RMSE) 
were used; 
 R2 = 1 – Σ (yi – ŷi)2 / Σ (yi – y̅)2 (4) 
  MAE = 1/n Σ |yi – ŷi|  (5) 
  RMSE = √ 1/n Σ (yi – ŷi)2  (6) 
where n is the number of observations, yi is the actual value of the ith observation, ŷi is the 
predicted value of the ith observation, and y̅ is the mean of all the observations. For all model 
training and testing, the tidymodels package in R was used. All of the other data handling and 
statistical tasks were also performed in R (R Core Team, 2023). 
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Results 

1. Leaf sensors vs. N status indicators 
Table 1 shows the simple relationships between leaf sensor readings and N status indicators. The 
R2

 values were much higher for the relationship with PNN concentration than NNI. Both of the N 
status indicators were best represented by power or quadratic regressions. Dualex N balance 
index (NBI) reading had slightly higher R2 values in relationships with both PPN concentration 
and NNI than SPAD reading. Figure 1 shows the relationships between the leaf sensor readings 
and the N status indicators for those with the highest R2 values as bolded in Table 1. All three 
readings were selected for the Dualex only MLR models using forward selection in a whole 
dataset. Note that Dualex NBI reading was not part of forward selection here as the derivation of 
NBI, Chl/Flav, will cause multicollinearity quantified by a very high variance inflation factor value. 
The R2 value was slightly higher at 0.63 for the relationship with PNN concentration, while slightly 
lower at 0.23 for the relationship with NNI. When calibrated and validated in the partitioned 
datasets, the validation R2 values for the best simple regressions were 0.60, 0.56, 0.27, and 0.2, 
in the top to bottom order of those bolded in Table 1. Similarly, the validated R2 values for PNN 
concentration and NNI predictions using the Dualex only MLR models were 0.62 and 0.21, 
respectively. 

Table 1. Simple relationships between leaf sensors and N status indicators. 
 

(Petiole NO3-N) Regression Equation R2 

SPAD power log(y) = 7.98 log(x) - 20.98 0.56 

Dualex Chl power log(y) = 6.35 log(x) - 12.03 0.53 

Dualex Flav quadratic y = - 21644 x2 - 98686 x  + 13241 0.35 

Dualex Anth quadratic y = 81162 x2 + 14765 x + 13241 0.24 

Dualex NBI quadratic y = - 13902 x2 +132078 x + 13241 0.61 

        

(NNI) Regression Equation R2 

SPAD quadratic y = - 3.03 x2 + 2.38 x + 1.61 0.21 

Dualex Chl quadratic y = - 2.15 x2 + 2.69 x + 1.61 0.17 

Dualex Flav exponential log(y) = - 0.475 x + 1.13 0.19 

Dualex Anth quadratic y = 1.01 x2 - 1.88 x + 1.61 0.07 

Dualex NBI power log(y) = 0.449 log(x) - 0.888 0.25 
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Figure 1. the relationships between the leaf sensor readings and the N status indicators. 

2. Relationships using leaf sensor and ancillary data 
Forward selection was used in the training dataset to identify the important features in the MLR 
models for PNN concentration and NNI predictions. Table 2 shows all of the MLR models with 
their R2 values. Leaf sensor readings were mostly selected first for PNN concentration, followed 
by genetic x weather x management (GxExM) variables. On the other hand, the GxExM variables 
took precedence over leaf sensor readings when predicting NNI. Note that SPAD reading was 
not even selected for NNI prediction. Boruta found most of the variables in the dataset to be 
important, while similar variables ranked high in both forward selection and Boruta (Figure 2). 
Unlike forward selection, Boruta ranked leaf sensor readings high in NNI prediction. The top 10 
most important features were included in RF and XGBoost regressions. Table 3 shows the 
validation results of these two tree-based models. RF demonstrated improved prediction accuracy 
for PNN concentration, especially considering the sufficiency thresholds proposed by Rosen & 
Bierman (2008). The NNI prediction accuracy did not improved much, whether RF or XGBoost 
was used.  

 

Table 2. The summary of multiple liner regressions using leaf sensor readings and ancillary data 
 

y Sensor Equation R2 

Petiole SPAD 
y = 92.90 SPAD - 13.85 acGDDs + 48.54 as_N - 38.44 acMoist + 11245.45 Ini_B - 

18.78 HL - 3885.56 IR - 5249.36 LK - 2189.37 MN - 2291.40 RB - 1822.29 UL + 
21430.79 

0.78 

Petiole Dualex y = 19.09 Chl - 11642.02 Flav -57.12 acMoist + 39.59 as_N + 21882.62 Ini_B - 1020.59 
HL - 3026.65 IR - 5809.92 LK - 1946.91 MN - 3528.96 RB - 1466.00 UL + 37026.91 

0.81 

NNI SPAD y = 0.0031 as_N + 0.0005 acMoist - 2.3653 Ini_B - 0.0008 acGDDs + 0.0007 Ini_Ca + 
0.4156 HL + 0.4788 IR + 0.2462 LK - 0.0603 MN + 0.3399 RB + 0.1738 UL + 1.1156  

0.54 

NNI Dualex y = 0.0028 as_N - 0.0006 acMoist - 0.3906 Flav - 0.9546 Ini_B + 0.2855 HL + 0.4934 
IR + 0.2462 LK - 0.0413 MN + 0.2473 RB + 0.1760 UL + 1.8010 

0.59 

acGDD; accumulated GDDs, acMoist; accumulated total moisture, as_N; as-applied N rates, Chl; Dualex Chl, Flav; Dualex 
Flav, Ini_Ca; Initial soil test results for Ca, Ini_B; Initial soil test results for Boron, HL; Hamlin Russet, IR; Ivory Russet, LK; 
Lamoka, MN; MN13142, RB; Russet Burbank, UL; Umatilla Russet 
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Figure 2. Permutation-based feature importance for PNN concentration and NNI prediction using Boruta  

 
Table 3. The summary of tree-based ML model performance 

 
ML Response Sensor R2 MAE RMSE 

RF 

Petiole SPAD 0.88 1898 2650 
Petiole Dualex 0.86 2016 2818 

NNI SPAD 0.61 0.19 0.26 
NNI Dualex 0.63 0.19 0.25 

XGBoost 
NNI SPAD 0.58 0.19 0.27 
NNI Dualex 0.67 0.16 0.24 

 ML; Machine Learning 
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Discussion 

1. Upgrading leaf sensor 
Based on the results of the simple regression and sensor only MLR analyses, Dualex was slightly 
superior in PNN concentration prediction to SPAD. The sensor difference becomes a little more 
evident when the log-transformation of the SPAD-based best regression led to poor prediction 
performance on the original scale and the SPAD-based second best regression, quadratic, had 
an R2 value of 0.48. Dualex particularly benefitted from the addition of Flav reading and its 
usefulness was better harnessed by allowing more flexibility with their coefficients in MLR than in 
the form of NBI. However, the degree of improvement would not be large enough to incentivize 
the sensor upgrade. There was no sensor difference in NNI prediction. As the performance of 
other more complicated models demonstrated, the data fusion approach using the GxExM 
information reduced the sensor difference and improved the model performance greatly. This is 
rather a preferred and effective approach for making valid predictions as previous studies also 
reported (Li et al., 2021, 2022; Wang et al., 2023).  

2. Important variables for making N status predictions 
As Pearson correlation in Figure 3 visualizes, many of the initial soil test results were not much 
correlated with the N status indicators of interest. Some of those that were moderately correlated 
with the N status indicators of interest were also correlated with other variables such as sensor 
readings. In other words, the initial soil test results were not as helpful for model performance. 
Weather forward selection or permutation-based importance metric was used, most important 
features for PNN concentration and NNI prediction were generally sensor readings and genetic, 
weather, and management information. However, the forward selection and Boruta for NNI 
prediction implies relatively diminished impacts of sensor readings, especially for SPAD and 
Dualex Chl. Relaxing the linear conformity by using RF and XGBoost further improved the model 
performance for both PNN concentration and NNI predictions. The XGBoost model was applied 
to NNI prediction to see if higher model complexity could make up for a lack of predictive powers 
in explanatory variables. The low prediction accuracy for NNI would have to be addressed by 
incorporating more useful features such as those that account for plant biomass (e.g. NDVI and 
NDRE) (Li et al., 2022; Wang et al., 2023). 

Figure 3. Pearson correlation coefficients among all variables 
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3. Poor NNI prediction using leaf sensors 
Leaf sensors were effective in predicting PNN concentration but not NNI. Both SPAD and Dualex 
meters were designed to measure leaf Chl using leaf transmittance (Cerovic et al., 2012). Petiole 
is a plant organ that transports N to leaf, which is a plant organ for N storage. While different roles 
of these two plant organs result in reflecting different plant N status to be precise, their anatomical 
proximity should justify the correlation between the SPAD/Dualex Chl readings and PNN 
concentration. It is also important to note that the SPAD/Dualex Chl readings are surface-based 
and are compatible with N concentration prediction. Meanwhile, NNI is a whole plant-based 
approach and is, thus, greatly affected by the dynamics of N partitioning within the plant across 
the growth stages. Giletto et al. (2020) discussed the unique complexity of potato whole plant N 
dynamics involving not only the metabolic and structural compartments but reserve storage. 
Because the whole plant N dynamics of potato changes when the tubers come into play, the 
attempt to predict NNI across the season was not very successful. The difficulty of predicting NNI 
using SPAD/Dualex Chl readings was even higher as they do not account for leaf mass per area. 
Dualex Flav readings or Dualex NBI were more conducive to NNI prediction because Flav and 
leaf mass per area have a high correlation (Cerovic et al., 2012). 

4. Limitations and future progress 
The size of the data used here was somewhat small and constrained the data partitioning manner 
resulting in a random 8:2 split for the training and testing datasets. This is a case of moderate 
information leak. The overfitting in the training dataset was not necessarily penalized enough 
when validated in the testing dataset making the model performance optimistic, especially for 
complex models. When the models are applied in a new season, some of them will tend to 
underperform. As the feature importance metrics indicated and it makes sense agronomically, the 
as-applied N rate was one of the most important features for predicting N status indicators. A 
large quantity of total N fertilizer was applied in the form of controlled release fertilizer in the 
studies. However, the release rate of this fertilizer over time was not considered. Better 
characterizing the release rate could improve the prediction accuracy. The high variability of PNN 
concentration and the complex dynamics of NNI made their predictions challenging (Giletto et al., 
2020; Goffart et al., 2008). NNI prediction will be further improved by characterizing the dynamics 
of N allocation within the plants. The sufficiency threshold must also be established for each 
cultivars to make decisions on in-season N fertilizer applications (Bélanger et al., 2003; Bohman 
et al., 2023; MacKerron et al., 1995; Zhang et al., 1996). NNI has the potential to make variable 
in-season N fertilizer applications (Giletto & Echeverría, 2013). 
The raw sensor readings might provide an insight into potato N status through calibrated 
thresholds. For PNN concentration and NNI prediction, a few additional machine learning models 
will be explored, and their classification algorithms will be compared too. As demonstrated by 
Giletto et al. (2020), vine-based NNI can be an alternative to whole plant-based NNI. Using vine-
based NNI instead might help isolate the effects of critical N dilution from the reserve storage to 
some degree and make better predictions using leaf sensors. However, it is also important to note 
that the usefulness of vine-based NNI is limited to a particular period of the season (i.e. 60-90 
days after planting). Nitrogen Sufficiency Index (NSI) can be another approach, where one of the 
higher N treatments can be designated as N rich based on agronomic analysis. This is a cultivar, 
site, and year specific normalization approach, while the establishment of N rich plots is often 
considered a limitation to practical implementation. 

Conclusion 
Dualex demonstrated slight improvement in predicting PNN concentration and NNI owing to the 
addition of Flav reading. Meanwhile, the data fusion approach using GxExM information greatly 
improved the prediction accuracy of the N status indicators and diminished the sensor differences. 
Compared to PNN concertation, the models struggled to make good NNI predictions using leaf 
sensor readings due to the complex dynamics of N allocation within potato plants. The variables 
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that account for plant biomass such as NDVI or NDRE will help improve the accuracy of NNI 
prediction. Overall, upgrading the leaf sensor is only justifiable in situations with no accessible 
ancillary data. The preferred and effective approach is to fuse leaf sensor readings with GxExM 
information using machine learning models. More analyses will be done for potato N status 
diagnosis using raw sensor data with calibrate thresholds, using other machine learning models 
and their classification algorithms, and predicting vine-based NNI instead of whole plant-based 
NNI. 
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