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Abstract 

Quantifying variability in soils often provides a macro-scale characterization of soil 

properties. Conversely, high-resolution reflectance-based characterization of crop canopy has 

enabled quantification of crop characteristics at a micro-scale. This study aims to delineate a site-

specific management unit that accounts for both macro-scale spatial variability in soil and micro-

scale spatial variability in crops. The specific objective of this study was to generate H-FIS based 

Site-Specific Management Grids that accounts for macro and micro variability in soil and crop 

properties. The study was conducted over four site years at Kansas River Valley (KRV) 

experimentation fields in Topeka and Rossville, Kansas. A proximal soil sensor, Veris-MSP3 was 

used to acquire soil variables. The Unmanned Aerial Vehicle (UAV) on-board MicaSense 

Rededge-3 multispectral sensor was used to collect multi-spectral images. These imageries were 

subsequently processed to calculate vegetation indices including NDVI (Normalized Difference 

Vegetation Index), SAVI (Soil Adjusted Vegetation Index), NDRE (Normalized Difference Red 

Edge) as proxy to crop growth. The H-FIS output data were used to map the SSMGs. A 

classification with ten classes of grid-based management units was successfully delineated for all 

site years. A similar spatial trend was observed between coupled variable SSMGs and grain yield 

(corn and soybean) for all site years. The degree of agreement between coupled soil-crop variables 

based SSMGs and solely macro-scale variability based SSMGs indicated a dissimilarity with 



kappa coefficient (κ) ranging between -0.013 and 0.16. Overall, the complex coupling of soil and 

crop variables accounting for both macro- and micro-scale variability was achieved. 

Introduction 

Soil-based Site-Specific Management Zone (SSMZ) guided variable rate fertilizer 

applications were found to be efficient for areas with large-scale spatial variability of soil 

properties (Cordero et al., 2019). Several methods have been proposed to delineate management 

zones based on soil properties (Derby et al., 2007; Peralta et al., 2015; Haghverdi et al., 2015; 

Tripathi et al., 2015; Gili et al., 2017; Rossi et al., 2018, topographic attributes (Fraisse et al., 

2001), and remote sensing data over bare soil (Georgi et al., 2018; Mulla, 2013), all of these 

methods accounted primarily macro-scale variability in soils. Accounting only macro-scale 

variability in soil for management units is not sufficient because it fails to account for in-season 

crop nitrogen (N) demand influenced by weather and crop management practices (Shanahan et al., 

2008). Even though quantifying micro-scale variability has been studied with crop N sensors, there 

are very few studies that tried to integrate macro-scale and micro-scale variability for delineation 

of a site-specific management unit. The delineation of management units can consider a spectrum 

of possibilities and their respective likelihoods, moving away from single deterministic prediction. 

Such an approach provides more precise management units, tailored based on grid size applicable 

for farm implement width and also accounts for macro and micro-variability in the system. 

Considering the size of these smaller management units to match individual nozzle level fertilizer 

delivery system, these management units are more appropriately referred to as 'Site-Specific 

Management Grid (SSMG)'. The objective of this study was to generate fuzzy inference system 

based site-specific management grids that accounts for macro and micro variability in soil and crop 

properties. 



Materials and Methods 

This study was conducted over a period of two years (2021 and 2022) at two locations in 

Kansas, over a total of four site-years. The sites are distributed across Kansas River Valley (KRV) 

experiment fields at Topeka (39° 4’ 34.04"N, 95° 46’ 11.98"W) and Rossville (39° 7’ 6.36"N, 95° 

55’ 37.35"W) stations. Studies conducted at KRV Topeka experiment field were designated as 

‘site year-1’ and ‘site year-2’ for 2021 and 2022, respectively, and studies conducted at KRV 

Rossville experiment field were labelled as ‘site year-3’ and ‘site year-4’ for 2021 and 2022, 

respectively. Trimble Real-time kinematic positioning (RTK) system equipped, John Deere 5055E 

tractor was coupled with Veris-MSP3 (Veris Technologies, Inc., Salina, KS, USA) system to 

acquire apparent soil Electrical conductivity at depth of 0-30 cm (ECa shallow), apparent Electrical 

conductivity at depth of 0-90 cm (ECa deep) and organic matter (OM). Aerial imagery was 

collected with a MicaSense Rededge-3 multispectral sensor (MicaSense, Seattle, WA, USA) 

mounted on a DJI Matrice 100 quadcopter (DJI, Nanshan, Shenzhen, China) unmanned aerial 

vehicle (UAV). The multi-spectral sensor has 5 wavebands: Blue (475±20 nm), Green (560±20 

nm), Red (668±10 nm), Red Edge (717±10 nm), and Near-infrared (840±40 nm). Imageries 

collected on each flight date were processed with Pix4D mapper Pro software (Pix4D, Lausanne, 

Switzerland) to create georeferenced and orthorectified mosaic images. Vegetation indices were 

calculated with Pix4D mapper index calculator tool using the respective band reflectance. Multi-

spectral images collected for the study sites were processed to generate NDVI (Normalized 

Difference Vegetation Index), SAVI (Soil Adjusted Vegetation Index), NDRE (Normalized 

Difference Red Edge), and DSM maps. A total of seven to eight soil and crop variables that 

influenced spatial variability of yield were selected per site-year to develop fuzzy logic system. 

For each site-year, soil and topography variables including, DSM (m), slope (%), ECa (mS/m) at 



shallow, ECa (mS/m) at deep depth, OM (%), and CEC in addition to one or two vegetation indices 

(NDVI, SAVI, and NDRE) used as input variables and their respective yield/productivity as an 

output variable. ANFIS tuned MFs were used as an input to develop H-FIS model. The H-FIS 

model executed with a scripted Matlab code using “evalfis” function and compute fuzzification 

output as a result. The Takagi-Sugeno fuzzy inference system was employed to compute the 

outputs. The fuzzy outputs were classified into 10 quantile-based interval classes of grid-based 

site-specific management maps using ArcGIS Pro 3.1.1 software. A reclassification of the 10 class 

was made indicating 10 (dark green) as a potentially high management grid and 1 (dark red) as a 

potentially low management grid. 

Results  

H-FIS based SSMGs using coupled soil and crop input variables are shown in Figure 1 a and b, 

for site year-1 and 2. SSMG classes show grid productivity scales, denoting 10 as high productive 

grid and 1 as low productive grid. For site year-1, a noticeable low productivity grids occupied the 

centre of field encapsulated by a medium productivity grids and high productivity grids bounding 

the medium productivity grids (Figure 1 a). On the contrary, for soybean cultivated site year-2, a 

high-productivity grids seem more dominant compared to site year-1 SSMG (Figure 1 b) and the 

low-productivity grids appears to have shrunk in number of grids and divided into smaller regions. 

Visually, coupled macro-scale and micro-scale variability based SSMGs presented both macro-

scale and micro-scale variability in the delineated SSMGs (Figure 1 a and b), whereas soil based 

SSMGs only captured macro-scale variability (Figure 1 c and d).  



 

Figure 0. Hybrid-Fuzzy Inference System (H-FIS) based site-specific management grids with 
coupling of macro-scale spatial variability in soil and micro-scale variability in crop for (a) 
site year-1, (b) site year-2; and site-specific management grids with soil alone for (c) site year-
1, (d) site year-2. 
 

The effectiveness of H-FIS in accurately mapping human thought processes and 

argumentations significantly advances the process of micro- and macro-scale variability data 

fusion (multi-scale data fusion). The rule-based inference engine of H-FIS allowed different types 

of data to be related to each other and their information content is enhanced. The significant finding 

of this study is that an integration of macro- and micro-scale variability for delineation of SSMGs, 

increased number of high and medium productivity grids for all site years. The visual observation 

of H-FIS based SSMGs were supported by quantitative assessment with kappa coefficient (κ) 

based on the agreement between the SSMGs. Quantitative comparison between coupled variables 

based SSMGs and macro-scale variability based SSMGs, for both site year-1 and site year-2 

reported a kappa coefficient of 0.16 and -0.013, demonstrating the dissimilarities between SSMGs. 

The kappa coefficient explicitly shows that there was no agreement between SSMGs maps, 

indicating a dissimilarity created based on the data sources used for delineating the management 

grids.  

Conclusions 

The H-FIS delineated site-specific management grid for all study site years. Soil and crop 

variables-based H-FIS management grid characterized macro-scale variability in soil and micro-



scale variability in crop. Scattering of management grids are highly dependent on vegetation 

indices, as a result there is a clear indication of changes of management grid as changes of crops 

cultivated. In conclusion, SSMGs successfully translated coupling of macro-scale variability in 

soil and micro-scale variability in crops to clustered zones that require similar management 

practices. Delineation of SSMGs is the initial stage in optimizing fertilizer usage and successful 

SSMGs guided fertilizer applications. 
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