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1.1 Abstract 

Optimal crop management relies on accurate measurements of soil nitrogen and a 

comprehensive understanding of its spatial variability. However, spatially characterized 

information on soil nitrate-nitrogen (NO3-N) is not always readily available during fertilizer 

application practices. The complex mobility of soil NO3-N, coupled with the labor requirements 

and high costs linked to soil chemical analysis, underscores the necessity for an alternative method. 

An improved approach is warranted to achieve precise soil NO3-N estimation, ensuring it remains 

cost-effective and straightforward. In this study, non-imaging hyperspectral sensor with visible to 

short-wave infrared spectrum were used to estimate soil NO3-N content. The objective of this 

study was to estimate surface soil NO3-N using non-imaging hyperspectral sensing. Soil samples 

were analyzed for soil NO3-N and spectral measurements were acquired with ASD FieldSpec3 

spectroradiometer. Spectral preprocessing techniques were applied to refine the spectral data and 

remove noise. Effective spectral windows were determined such that spectral demonstrated 

sensitivity to changes in soil NO3-N. The selected spectral windows: W1 (1460-1690 nm), W2 

(1730-1780 nm), and W3 (1940-2150 nm) were used to estimate soil NO3-N. Partial Least Squares 

Regression (PLSR) and Random Forest Regression (RFR) were used to estimate soil NO3-N using 

selected spectral features and measured soil NO3-N. Estimated soil NO3-N map were developed. 

Map of measured soil NO3-N showed a similar spatial trend estimated with estimated soil NO3-N 



maps. The findings of potential of hyperspectral data-based soil NO3-N estimation models provide 

a cost-effective and practical technique to improve soil fertility management practices. 

Introduction 

The conventional soil sampling and laboratory-based routine chemical analysis to 

determine soil nitrogen are labor-intensive, expensive, and time-consuming (Janik et al., 1998). 

Furthermore, they typically necessitate the utilization of hazardous chemicals, such as 

concentrated acids and alkalis, which introduce potential safety hazards. Therefore, assessing soil 

nitrogen status needs an indirect technique that is capable of reducing soil sampling intensity to 

make it less labor intensive, as well as cheaper, quicker, non-destructive, and chemical free. Many 

researchers have used multiple tools including electrochemical sensors and optical techniques 

(spectroscopy) to rapidly, inexpensively, and indirectly estimate soil nitrogen (Adamchuk et al., 

2004). In recent times, reflectance spectroscopy is being used to quantify soil nitrogen (Vibhute et 

al., 2020a; Vohland et al., 2014; Xiao et al., 2018). These techniques offer numerous advantages 

over traditional methods, including non-destructive sample analysis, cost-efficiency, user-

friendliness, and rapid processing of large sample volumes with minimal sample preparation 

(Demattê et al., 2004). This study undertakes the challenge of estimating soil nitrogen while 

reducing soil sampling intensity, leveraging spectral similarities through application of the 

hyperspectral sensing tool. The objective of this study was to estimate surface soil NO3-N using 

non-imaging hyperspectral sensing. 

Materials and Methods 

This study was conducted over two years (2021 and 2022) across three study locations in 

the state of Kansas. Soil samples were collected from all three site years. Within field soil sampling 

locations were identified with a stratified random soil sampling design. A composite soil sample 



consisting of multiple soil cores was collected per 0.202 ha grid cell size for each study area. 

Spectral measurements were acquired for the soil samples at the Precision Ag Lab, Kansas State 

University, using a FieldSpec3 spectroradiometer (Analytical Spectral Devices, Boulder, CO, 

USA). The ASD FieldSpec3 has a spectral range from 350 nm to 2500 nm. The spectral reading 

was measured for soil samples following the protocol suggested by the Soil Spectroscopy Group 

and the Development of a Global Soil Spectral Library (Viscarra Rossel et al., 2006). The spectral 

pre-processing techniques applied were objective oriented and case sensitive.  Splice correction, 

removal of reflectance below 40 nm, Savitzky–Golay smoothing, Multiplicative scatter correction 

(MSC) and continuum removal were applied to minimize the influence of noise, remove spectral 

artifacts, and enhance the signals present in the dataset. Experiments were conducted in this study 

to select effective spectral windows that are sensitive to Nitrate-nitrogen. The Spectral Angle 

Mapper (SAM) technique used to calculate angle between two spectral vectors, a measure that is 

robust to variations in illumination and sensor response. In this study, 10-fold cross validation was 

adopted for model construction, meaning that 10 data partition schemes were used to model the 

same set of input-target data (Kucheryavskiy et al., 2020; Ludwig et al., 2018). The partial least 

squares (PLS) regression, and random forest regression (RF) algorithms were adopted to develop 

the model.  

Results 

The sensitivity of NO!" ions were observed at three spectral windows with range of the 

effective spectral window selected includes wavelengths: W1 (1460-1690 nm), W2 (1730-1780 

nm), and W3 (1940-2150 nm). The comparison of different models reveals that RF machine 

learning techniques yield highly satisfactory results for predicting soil NO3-N. RF regression 

resulted to be the best model in estimating soil NO3-N under high and reduced soil sampling 



intensity compared to PLSR. Spectral matching techniques, spectral angle mapper (SAM) was 

adopted to reduce the soil sampling intensity of all study site years in a considerable manner.  

 

Conclusion 

This study demonstrated the potential of estimating surface soil NO3-N with non-imaging 

hyperspectral data and reducing sampling intensity at the same time without compromising the 

accuracy of soil NO3-N estimation. In contrast to the conventional method, where growers 

physically collect soil samples, send them to a lab for analysis, and then create a prescription, 

reflectance spectroscopy emerges as a promising non-destructive and expeditious alternative for 

producing prescription maps. 
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