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Abstract. Smart irrigation is described as ‘the linking of technology and fundamental 
knowledge of crop physiology to significantly increase irrigation water use efficiency'. 
Irrigation scheduling tools such as smartphone applications have become prevalent in 
agricultural production due to their ability to decrease water use and improve crop 
health and yield. A suite of irrigation scheduling apps called “SmartIrrigation Apps for 
Scheduling Irrigation” contains models for many agronomical and horticultural crops, 
however, one does not currently exist for sweet corn (Zea mays var. rugosa). In the 
study presented here, we used satellite-based remote sensing data to benchmark crop 
evapotranspiration (ETc) estimates for sweet corn grown in the southeastern United 
States to provide irrigation scheduling recommendations for individual fields. Initial ETc 
estimates were collected over four seasons, across 12 grower-managed commercial 
sweet corn farms located in Mitchell, Decatur, and Seminole Counties, Georgia, United 
States of America (USA). We benchmarked the initial ETc estimates with 
PlanetScope™ satellite imagery-derived Normalized Difference Vegetation Index 
(NDVI) data, allowing us to adjust the crop coefficient (Kc) curve to reflect crop water 
needs for individual fields. This information will be incorporated into the existing 
SmartIrrigation App Suite to create a sweet corn model.  
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Introduction 
According to the Food and Agriculture Organization (FAO), the human population is expected to 
reach approximately 10 billion in the next 2 decades (FAO, 2017). This increase will require 
current plant-based food production to double in order to feed the growing population (Ainsworth 
et al., 2012). When considering this drastic increase in production needs, it is clear that efficient 
agricultural practices are necessary (FAO, 2017; Jha et al., 2019; Abioye et al., 2020; Garcia et 
al., 2020; Talaviya et al., 2020). Agricultural irrigation is also responsible for over 85% of global 
freshwater usage (Talaviya et al., 2020). Therefore, innovative technologies and practices to 
ensure practical and cost-effective water conservation play a vital role in optimizing efficient 
agricultural production (Umair and Usmain, 2010; Vellidis et al., 2016).   
Precision Agriculture and Precision Irrigation 
The quickly evolving field of precision agriculture (PA) uses emerging technologies to ensure 
optimal application of resources in agricultural production (Bongiovanni and Lowenberg-Deboer, 
2004). Precision irrigation (PI), a subset of PA, bears the goal of optimizing application of water 
to meet crop needs of a specific area at a specific time to achieve ideal crop health and 
management goals (Smith and Baillie, 2009; Pierce, 2010). PI considers varying water needs of 
crops, soil characteristics, precipitation, atmospheric conditions, and crop-specific attributes when 
making irrigation decisions (Abioye et al., 2020; Daccahe et al., 2015). When utilized efficiently, 
PI can increase both crop production and irrigation water use efficiency (IWUE) by up to 40% 
(Savitha and UmaMaheshwari, 2018; Vellidis et al., 2016).  
Irrigation scheduling (IS) is a facet of PI that provides information to guide the decisions on how 
much irrigation water to apply and when to apply it (George et al., 2000; Broner, 2005; Wang and 
Cai, 2009). Implementation of IS has been shown to maximize yield while also reducing water 
costs and fertilizer run-off (Broner, 2005). A key concept in IS is evapotranspiration (ET) 
estimation. ET is defined as the cumulative water loss through evaporation from the soil surface 
surrounding a plant, combined with plant transpiration (Allen, 2005). Because of the value of 
considering ET in understanding crop water needs, ET-based IS has become prevalent, 
especially in crops that are sensitive to water stress, such as sweet corn (Zea mays var. rugosa). 
Sweet Corn in Georgia 
Sweet corn is one of the most popular crops, globally, and the United States of America (USA) 
ranks first in global sweet corn production (Tracy, 1993). Over 50 percent of global sweet corn 
production takes place in the state of Georgia, and of that, 50 percent is produced in Mitchell and 
Decatur Counties (McAvoy and Coolong, 2022). Because sweet corn is marketed as “fresh 
produce”, quality is critical in sweet corn production. Sweet corn is sensitive to water stress and 
optimal soil water conditions are necessary for high yields and high quality and intensive 
management is necessary throughout the growing season (Kwabiah, 2004). As a result, sweet 
corn has relatively high-water needs (Hassanli et al. 2009). When sweet corn is grown under 
irrigated management conditions, it has increased yield potential (Viswandatha, 2002). IS has 
proven to be an effective method of improving water use efficiency, while also improving sweet 
corn yield (Braunworth and Mack, 1987; Hassanli et al., 2009; Datta et al., 2022). However, 
irrigation management for sweet corn grown in the southeastern USA is particularly difficult due 
to the high climatic variability and uncertainty of precipitation during the growing seasons (Stone, 
2016). 
The SmartIrrigation App Suite 
Beginning in 2012, a group of University of Georgia (UGA) and University of Florida (UF) faculty 
began developing a suite of irrigation scheduling apps for a variety of crops.  The suite was called 
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“SmartIrrigation Apps for Scheduling Irrigation” and the initial group included apps for citrus, 
cotton, strawberry, and residential turf. Several more apps have been added to the suite, including 
the SmartIrrigation CropFit App, that combines irrigation scheduling recommendations for field 
corn, cotton, and soybeans. Models for peanut and sweet corn irrigation scheduling will be 
integrated into the CropFit App in 2025. The SmartIrrigation App Suite uses the approach 
described in ‘Organization in Irrigation and Drainage Paper No. 56’ (also known as FAO-56) to 
estimate daily crop water use. 
Crop Coefficients (Kc) 
The FAO released FAO-56 (Allen et al., 1998) to revise the guidelines for quantifying crop water 
requirements. FAO-56 uses the FAO Penman-Monteith (FAO-56 PM) equation (Equation 1) to 
estimate crop water requirements (Kc curves) for various crops at different growth stages (Allen 
and FAO, 1998).  
  ETc = ETo x Kc.  (1) 
where 
ETc is crop evapotranspiration, 
ETo is reference evapotranspiration, and 
Kc is crop coefficient. 
For annual crops, Kc changes with the phenological stage and is used to proportionally modify 
ETo.  Kc typically begins with small values after emergence and increases to 1.0 or above when 
the crop has the greatest water demand. This usually occurs during the crop’s reproductive stage 
(Shavkat Kenjabaev et al., 2020). 
Allen et al. (1998) state that sweet corn maturity fluctuates between 58 and 100 days depending 
on growing region and season. The water needs of sweet corn increase rapidly from 40% of ETo 
to 110% of ETo during the peak growth stage, resulting in differing Kc values at different growth 
stages (Ozorez-Hampton et al., 2012). The growth stages at which Kc values peak consists of 
silking, tasseling, and ear development. Similarly, this is the period at which sweet corn is most 
sensitive to water stress (Rao, 1988). The FAO has released a Kc curve for sweet corn, the data 
on which the curve is based was collected from sweet corn grown in Idaho, USA., which has a 
different climate than the southeastern USA (Allen et al., 1998) (Figure 1).  

 
Fig 1. Crop coefficient (Kc) curve for sweet corn grown in Idaho, USA, as a function of days after planting (DAP) (adapted 

from Allen et al., 1998).  

Due to these climatic differences and the impact they have on sweet corn growth and 
development, we created a revised ET-based Kc curve for sweet corn based on data collected in 
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southwestern Georgia, USA. 
Normalized Difference Vegetation Index (NDVI) 
Normalized Difference Vegetation Index (NDVI) has proven to be a valuable tool in irrigation 
scheduling (Hunsaker et al., 2003; Singh et al., 2012). NDVI is the best-known and most widely 
used vegetation index (VI) (Rouse et al., 1974; Hobbs and Moody, 1990; Myneni et al., 1995; 
Pettorelli et al., 2005; Wu et al., 2019). Because NDVI has been found to be a good predictor of 
biomass, it is also a good predictor of Kc (Bausch and Neal, 1987; Hunsaker et al., 2003; Stone, 
2016). While Kc values are indicative of irrigation requirements of a crop, Bausch and Neal (1987) 
and Stone (2016) found that seasonal NDVI curves resemble seasonal Kc curves. These findings 
show that spectrally derived Kc values may be considered a real-time Kc that illustrates the crop’s 
response to weather, stresses, and management (Stone, 2016). NDVI-based Kc values 
adequately relay crop water needs, therefore, when paired with irrigation scheduling can improve 
WUE. The study described here evaluated the performance of NDVI as a predictor of real-time 
Kc values of individual sweet corn farms.  

Methods 
This study is comprised of three stages: (1) data collection; (2) Kc curve development, (3) 
evaluation of NDVI as an indicator of crop water needs (Kc values).  The data collection stage 
entailed installing soil moisture sensor probes in grower-managed, commercial sweet corn fields 
to collect daily water use (DWU) data. DWU data were collected over four growing seasons– the 
spring and autumn growing seasons of 2022 and 2023. Our study sites were in Mitchell, Decatur, 
and Seminole Counties within Georgia, USA. These counties lead the state of Georgia in sweet 
corn production, and the climate is categorized as humid-subtropical with hot, humid summers 
and mild winters. 
Data Collection 
To collect data to develop the Kc curve, each sweet corn field was instrumented with two soil 
moisture probes (Sentek Sensor Technologies—Stepney SA, Australia). The 60 cm (24 in) soil 
moisture probes measured soil moisture as volumetric water content (VWC) at six depths, every 
10 cm (4 in), beginning at 10 cm (4 in) below the soil surface. Once installed, the probes were 
connected to data loggers (AgSense Solutions—South Dakota, USA), that transmit data to a web 
interface in 30-minute intervals. For this project, the probes were used only to monitor VWC, and 
individual growers managed the irrigation of these fields. Precipitation, solar radiation, and wind 
speed were measured by Vantage Pro2 weather stations (Davis Instruments Corporation —
California, USA) installed at each field location and cross referenced with meteorological data 
derived from the UGA weather network. 
Kc Curve Development 
DWU calculations for developing the Kc curve were made from VWC data that were collected 
between field capacity and wilting point. The calculated DWU values were assumed to be daily 
crop water use, or crop evapotranspiration (ETc). Only ETc values from days with solar radiation 
that is equal to or greater than the mean solar radiation for the period of record from the nearest 
UGA weather stations were used for further analysis. This was to ensure that the Kc curve 
represents peak water use for each phenological stage. 
The remaining ETc values were paired with the corresponding daily ETo values calculated with 
meteorological data from the nearest weather station. The ETc and associated ETo values were 
then applied to Equation 2 to calculate a daily, Kc.  
   Kc=ETc/ETo  (2) 
where 
Kc is crop coefficient. 
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ETc is crop evapotranspiration, 
ETo is reference evapotranspiration, and 
Daily Kc values were used to create the empirically adjusted ET-based Kc curve for sweet corn 
grown under the climatological conditions in southern Georgia and northern Florida (Figure 2). 
   

 
Fig 2. Crop coefficient (Kc) curves derived from DWU (ETc) measurements and on study fields and NDVI values of 

individual fields (indicated by various colors and shapes) from PlanetScope™.  

Results 
The values for ET-based Kc and NDVI-based Kc plotted as a function of GDD show that both 
parameters increased similarly during the early stages of crop development and had a 
comparable horizontal trend as the crop approached harvest. In all fields evaluated, the maximum 
Kc occurred around the time of effective canopy closure, when NDVI values for replicates were 
also highest, 0.75 or above at approximately 1000 GDD. After effective full cover, NDVI remained 
relatively constant within the range of 0.75-0.85 until harvest. However, NDVI-based Kc values 
were slightly lower than those that were based on ET. Because of this, we elected to develop a 
secondary Kc curve that better represented the NDVI-based Kc (Figure 2). Both Kc curves will be 
evaluated for IWUE at the UGA’s Stripling Irrigation Research Park in Camilla, Georgia, USA 
during the spring and autumn seasons of 2024 and 2025 to determine their performance. 

Discussion and Conclusions 
Seasonal NDVI values were evaluated as predictors for seasonal Kc for sweet corn grown in the 
southeastern USA. An initial evaluation of the model indicated that the NDVI-based crop 
coefficient (Kc) provided ETc estimations that closely matched the observed ETc obtained from 
in-field data. The NDVI-based Kc trended lower than our ET-based Kc, therefore an adjusted Kc 
curve that better represents NDVI-based Kc was also developed and will be evaluated for 
performance. The NDVI-based Kc function used in this methodology can be easily integrated into 
the FAO-56 dual crop coefficient procedures, as well as the CropFit App, allowing for the 
application of remotely sensed observations for real-time sweet corn irrigation scheduling. Further 
experiments are underway at UGA's Stripling Irrigation Research Park to assess the application 
of the NDVI-based and ET-based Kc for scheduling irrigations for sweet corn. 
The primary benefits anticipated from using real-time multispectral-based Kc to compare with 
conventional Kc curves include the ability to account for real-time individual field conditions. 
Remotely sensed Kc is expected to align with the unique developmental patterns of the crop, 
thereby potentially eliminating the need for field observations, assumptions, and complex 

Figure 4. Crop coefficient curves derived from DWU measurements on study fields and NDVI 
values of individual fields from PlanetScope ™.
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procedures associated with adjusting conventional Kc curves for conditions other than optimum. 
Additionally, the remote sensing technique may enable the detection and quantification of 
differences in ETc within a single field and on a field-by-field basis. 
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