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Abstract.  
With unprecedented challenges to achieve sustainable crop productivity under climate change 
and varying soil conditions, adaptive management strategies are required for optimizing 
cropping systems. Using sensors, cropping systems can be continuously monitored and the 
data collected by them can be analyzed for making informed adaptive management decisions to 
enhance productivity and environmental sustainability. But sensors reflect present conditions or 
provide some history, yet decisions should also consider what is yet to occur. This study 
leverages the use of the state-of-the-art biophysical model, Agricultural Production System 
sIMulator (APSIM), which takes the genetics (G), environmental (E), and management (M) data, 
to predict the growth and yield of corn (Zea Mays L.), a major crop for United States. Using 
digital twin models, we can project outcomes of different management decisions under varying 
environmental conditions and soil types and in context of climate change. The key objectives of 
this research were to elucidate the impacts of varying soil conditions and climate scenarios on 
corn growth and yield and further identify the best optimum practices (planting date, amount of 
nitrogen fertilizer, and amount of irrigation) to improve yield and profitability. In doing so, we 
characterize system resilience by running simulations over 38 years of past weather data for 
four locations having four different soil types and under two different climate scenarios. 
Keywords.   
APSIM, Adaptive Management, Biophysical Modeling, Climate Change, Digital Twin, Irrigation 
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Introduction 
Climate change poses a formidable challenge to global food security as variations in 
meteorological parameters profoundly impact crop production. These variations in 
meteorological parameters constitute increases in nocturnal and diurnal warming and irregular 
rainfall patterns and causes abiotic and biotic stresses (Abendroth, 2021). This issue is 
particularly critical for corn (Zea Mays L.) production in the United States, given its substantial 
economic importance and its role as a major source of calories and nutrients both for humans 
and animals. To meet the food demands of growing global population, which is expected to be 
9.8 billion by 2050, cereal production, including corn, must increase by approximately 70-100% 
(Bayu, 2020; Sharma, 2022). This increase in corn production can be achieved by developing 
genotypes and adaptive farm management strategies that are resilient to new climatic 
conditions. Adaptive farm management strategies are important because once the seeds with 
given genetic (G) traits have been sown, the characteristics and response of the seeds are fixed 
and cannot be changed and new genetic traits cannot be added and their realized performance 
can be only modulated by changing the management practices in the given environmental (E) 
conditions This interplay between G, E, and M has been widely studied to design ideotypes for 
the future (Jamshidi, 2023). Yet, there is a paucity of research focused on recommending 
adaptive M practices tailored to local conditions and understanding how these M strategies 
interact with others to impact corn yield. 
Therefore, there is a pressing need to reframe the research question related to agricultural 
production, aiming to enable stakeholders to make informed and adaptive farm management 
decisions in context of climate change (Thornton, 2014). Some of the management practices 
that could be changed/adapted in context of climate change are planting date, date(s) and rates 
of nitrogen (N) fertilizer, and irrigation rules. For example, planting corn early in the season can 
mitigate the impact of excessive heat in the growing season and can potentially preserve yield. 
However, planting too early in the season can decrease yield due to frosts (Pathak, 2023). 
Applying too little N fertilizer reduces yield, while excessive amounts result in diminishing 
returns as corn N uptake becomes constant, leading to negative ecological and environmental 
consequences. Additionally, water stress during the critical growth stages of corn production will 
reduce yield while irrigating more increase incidence of disease and water logging (Pathak, 
2023). 
Biophysical (process-based) or crop growth models can be used to understand the 
consequences of the variation in management practices in context of climate change (Baum, 
2020). These models are built upon the physiological understanding of plant growth and 
processes and are represented in non-linear differential equations. Some of the commonly used 
crop growth modeling platforms include Agriculture Production System sIMulator (APSIM) 
(McCown, 1996), Decision Support for Agrotechnology Transfer (DSSAT) (Jones, 2003), and 
World Food Studies (WOFOST) (Van Diepen, 1989). Typically, these models are often used for 
qualitative understanding of crop response in terms of G, E, and M rather than for their 
quantitative prediction accuracy. (Pathak, 2023) used APSIM to simulate the growth of corn 
under different N fertilizer treatments and evaluate the effect of rainfall on corn yield and other 
environmental factors. Similarly, (Baum, 2020) used APSIM to evaluate how the planting dates 
of corn might change in Iowa in context of climate change. They simulated the corn production 
under six climate change scenarios and reported that the optimum planting date will shift by ±5 
days with an increase in yield by 10%. Nandan (2021) simulated the corn production under 
different climate scenarios and found that that reduction in 30% of precipitation could reduce the 
mean yield by 10% and will require adaptive irrigation strategies to mitigate the loss. However, 
none of these studies have specifically addressed how the interactions between different 
management practices might affect corn yield under varying climate change scenarios. 
Therefore, the primary objective of this research is to examine the influence of distinct 
management decisions, namely planting dates, N fertilizer application rates, and irrigation 
protocols, on corn yields within four varied soil types and under two climatic conditions. We will 
comment on how individual treatments and their interactions impact corn yield. 



Proceedings of the 16th International Conference on Precision Agriculture 
21-24 July, 2024, Manhattan, Kansas, United States  

3 

Materials and Methods 

Model Description 
APSIM is a mechanistic, process-based, open-source simulator that helps to simulate farming 
systems including crops, soil, and environmental models (Holzworth, 2014). Its popularity has 
surged due to its modular architecture and user-friendly interface (Brown, 2014). In this 
research, APSIM next generation (version 2022.6.7044.0) was used along with following 
modules: maize model, SOILN model, and SOILWAT to simulate the corn production under 
different weather conditions on the daily time steps (Soufizadeh, 2018; Probert, 1998).   

Experimental Setup 
In this study, diverse sets of management practices were simulated under different climatic 
conditions to understand its impact on corn yield. Three different planting dates, namely April 1 
(early planting), April 30 (falls under optimum planting window), and May 30 (late planting) were 
simulated on APSIM. Furthermore, three different amounts of urea-N 142 kg/ha (75% of the 
common practice), 190 kg/ha (common practice), and 237 kg/ha (125% common practice) were 
included in the study along with two irrigation rules (zero irrigation and irrigation using 75 
percent of plant available water content (PAWC) as trigger point and 100 percent of PAWC as 
stopping point). The N fertilizer was applied six weeks after planting, typically corresponding to 
the V4-V6 growth stage. Pioneer P1197 cultivar with a cumulative relative maturity of 111 days 
was used in this study and was sown at a population of 8 plants per m2 with 1 bud per plant at a 
row spacing of 750 mm (about 2.46 ft) and a depth of 50 mm (about 1.97 in). To simulate the 
potential climate impacts, two global warming scenarios were followed (Filippelli, et al., 2020): 

• Mid-century projections: low carbon dioxide emissions (550 ppm), where the base line 
daily temperature was increased by 2.5 K (2.5 °C) and base line daily rainfall was 
increased by 6%. 

• End-century projections: high carbon dioxide emissions (670 ppm), where the base line 
daily temperature was increased by 5.5 K (5.5 °C) and base line rainfall was increased 
by 10%.  

Site Description and Agrometeorological Data 
The APSIM next generation (version 2022.6.7044.0) was used for running the simulation for 
four locations, namely Agronomy Center for Research and Education (ACRE) (40˚29’20.9” N, 
87˚0’11.7” W), Northeast Purdue Agriculture Center (NEPAC) (41° 6' 51.85'' N, 85° 26' 56.03'' 
W), Southeast Purdue Agriculture Center (SEPAC) (39° 2' 28.64'' N, 85° 31' 24.24'' W), and 
Pinney Purdue Agriculture Center (PPAC) (41° 27' 3.61'' N, 86° 56' 28.51'' W). The APSIM next 
generation facilitates direct download and integration of weather and soil data into the 
simulation. The weather data required for the experiment simulation was linked with the NASA 
POWER gridded database (https://power.larc.nasa.gov/data-access-viewer/) and was directly 
downloaded by the APSIM interface for ACRE farms into APSIM-readable format(.met 
extension) from 1984 to 2021. The weather data included six weather variables: maximum and 
minimum temperatures (degrees Celsius), total precipitation (millimeters per day), average 
incident shortwave radiation (Megajoule per square meter per day), wind speed (meters per 
second), and specific humidity (grams of water per kilogram of dry air). Additionally, APSIM is 
linked with ISRIC soil database (https://www.isric.org/), which provides the soil information by 
location. The data includes soil features from 0 cm to 180 cm depth, encompassing physical 
properties like soil bulk density, wilting point, field capacity, saturation point, and soil saturated 
conductivity; chemical properties such as soil pH; and organic properties including organic 
carbon content and are presented in Appendix table 1 to 4. In this study, both the weather and 
soil data were directly downloaded and integrated into the simulations, but the weather file 
remained the same across four locations to evaluate the effect of changing soil properties on 
yield. For changing the weather files as per climate change, the simple climate controller plugin 
of APSIM was used to change the temperature, rainfall, and carbon dioxide.  

https://power.larc.nasa.gov/data-access-viewer/
https://www.isric.org/
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Statistical evaluations 
Simulation results from APSIM were exported into excel (.xlsx) format and subsequently utilized 
in RStudio for statistical evaluation, namely analysis of variance (ANOVA) to determine the effect 
of different treatment on corn yield.  

Results and Discussions 

Effect and interaction of management practices on corn yield under different climate 
scenarios and soil types 
Figure 1 and Table 5 (in appendix) show that planting date, N fertilizer amount, irrigation rules, 
soil types, and weather scenarios have significant impact on corn yield.  

 

Figure 1: Simulated effect of nitrogen fertilizer, irrigation rules, location (soil type), and weather scenarios on corn yield 

Planting within the optimum window results in higher yield, while misalignment reduces yield by 
exposing plants to heat stress or frosts. The results align well with the literature (Van Roekel, 
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2011), where they reported that corn yield decreases around15 to 30% with the delay in four 
weeks of planting. Corn yield is highly dependent on the amount of N fertilizer applied, as seen 
in Figure 1, except for mid-century and end-century late planting (May 30). These findings align 
with existing literature (Zelenák, 2022), which reported that corn yield increased approximately 
5000 kg/ha, with the increase in N fertilizer rates from 0 kg/ha to 150 kg/ha. This increase in 
yield is because N fertilizer promotes plant growth, increases biomass, and helps plants to 
reach their genetic yield potential (Soufizadeh, 2018).  
In addition to N fertilizer amount, water availability also significantly affects corn yield (p-value < 
0.0001). Figure 1 illustrates that the application of irrigation improves the corn yield significantly 
across all locations and under different climate change scenarios and is also shown in (Pathak 
2023). Irrigating reduces corn sensitivity to precipitation, by supplementing soil moisture 
required at critical growth stages of corn development, particularly during the grain filling stage. 
From the figure 1, it is clearly evident that why Indiana farmers are now slowly adopting 
irrigation practices for corn production (Dong, 2023). (Ruis, et al., 2021) found that full irrigation 
can improve the corn yield by 11% as compared to limited irrigation, where water applied was 5 
to 10 cm less than full irrigation. Apart from the management practices, which can be controlled 
by humans, climate scenarios (weather) and soil properties play crucial roles in determining 
corn yield. The figure shows that yield varies significantly with change in soil properties and 
climate scenarios, even with consistent management practices. 
From table 5, it is evident that planting date has significant interactions with N fertilizer amount. 
Early planting enhances N uptake due to cooler soil temperatures and reduced volatilization 
losses (Liu, 2019). Conversely, higher temperature leads to increased water evaporation from 
soil, impacting soil moisture levels and consequently N uptake from the soil. Therefore, it can be 
seen from figure 1, that for all the locations with the climate change the optimal planting date will 
be early in April to get higher yield. For mid-century and late-century scenarios, planting on May 
30 does not significantly increase yield due to the higher temperatures. The warmer days 
accelerate the vegetation stage, and without side-dress N supplementation until July, N uptake 
is limited. This interaction between the N and soil moisture is further illustrated by the significant 
interaction between N fertilizer amount and irrigation rules and are shown with p-value less than 
0.0001. Irrigating under extreme heat conditions will supplement the soil moisture and thereby 
improves N uptake. Soil moisture retention capacity is dependent on soil physical and chemical 
properties and is also influenced by weather parameters (temperature and rainfall) and in turn 
also affects N uptake. Therefore, it can be concluded planting date and N fertilizer amounts 
have significant interactions with soil properties and temperatures.  

Conclusion 
In this study, we explored how crop growth models, such as APSIM can be used to help make 
informed farm management decisions at farm-level by simulating the long-term experiment at 
four locations across Indiana under two climate change scenarios. The simulation study results 
demonstrates that planting date, irrigation, N fertilizer amount, soil properties, and weather 
scenarios had significant impact on corn yield (p-value < 0.0001). Furthermore, with the climate 
change scenarios, the planting date of corn needs to shift ahead, the optimal period for these 
locations across Indiana will be in early April, irrigation will be required to supplement the soil 
moisture to help mitigate the higher temperatures, and an N fertilizer increment would not be 
helpful when delaying the planting beyond optimal window. Based on these results, it can be 
concluded that the interplay between plants’ physiological needs and environmental factors is 
complex and requires strategic and adaptive planning. Tailoring the farm management 
guidelines to site-specific conditions by using real-time weather and soil data to improve 
resilience to climate variability. 
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Appendix 
Table 1: Soil physical, chemical, and organic properties for farm at ACRE 

ACRE (40˚29’20.9” N, 87˚0’11.7” W) 
Depth BD AD LL 15 DUL SAT KS LL KL XF PAWC pH Carbon 
(cm) 

        
(0-1) 

 
  

0-15 1.40 0.12 0.229 0.345 0.442 29.57 0.229 0.08 1 0.116 6.59 4.500 

15-30 1.40 0.21 0.229 0.345 0.442 21.70 0.229 0.08 1 0.116 6.59 4.500 

30-60 1.49 0.23 0.230 0.346 0.408 15.78 0.230 0.08 1 0.116 7.12 2.250 

60-90 1.55 0.18 0.182 0.312 0.385 13.26 0.182 0.08 1 0.130 7.12 1.420 

90-120 1.64 0.13 0.125 0.270 0.351 14.46 0.125 0.08 1 0.145 7.23 0.750 

120-150 1.80 0.11 0.111 0.254 0.291 20.48 0.111 0.06 0.9 0.143 7.86 0.750 

150-180 1.80 0.11 0.111 0.254 0.291 26.13 0.111 0.03 0.5 0.143 7.86 0.750 
BD stands for bulk density (g/cc), AD stands for Air dry (mm/mm), LL15 stands for wilting point at 15 bars (mm/mm), SAT stands for 
saturated water content (mm/mm), DUL stands for drained upper limit (mm/mm), KS stands for saturated soil conductivity (mm/mm), 
LL stands for lower limit (mm/mm); and PAWC are crop specific parameter and in this case, it’s for maize (mm/mm), LL stands for 
maize lower limit (mm/mm), KL stands for maize water conductivity between soil layers (/day), XF stands for maize extinction 
coefficient, pH depicts the soil pH, Carbon (total %) is the soil organic matter percentage 

Table 2 : Soil physical, chemical, and organic properties for farm at NEPAC 

NEPAC (41° 6' 51.85'' N, 85° 26' 56.03'' W) 
Depth BD AD LL 15 DUL SAT KS LL KL XF PAWC pH Carbon 
(cm) 

        
(0-1) 

 
  

0-15 1.41 0.08 0.235 0.351 0.430 21.70 0.235 0.06 1.000 0.116 6.30 2.733 

15-30 1.54 0.08 0.230 0.324 0.390 15.33 0.230 0.06 0.907 0.094 6.30 1.622 

30-60 1.59 0.08 0.230 0.313 0.378 10.82 0.232 0.06 0.769 0.081 6.38 1.160 

60-90 1.61 0.08 0.228 0.313 0.370 11.14 0.253 0.04 0.717 0.060 6.78 0.977 

90-120 1.61 0.07 0.219 0.312 0.371 12.58 0.282 0.02 0.718 0.030 7.13 0.902 

120-150 1.61 0.07 0.217 0.312 0.373 13.49 0.299 0.01 0.726 0.013 7.42 0.894 

150-180 1.61 0.07 0.214 0.312 0.376 14.72 0.312 0.00 0.736 0.000 7.64 0.885 
BD stands for bulk density (g/cc), AD stands for Air dry (mm/mm), LL15 stands for wilting point at 15 bars (mm/mm), SAT stands for 
saturated water content (mm/mm), DUL stands for drained upper limit (mm/mm), KS stands for saturated soil conductivity (mm/mm), 
LL stands for lower limit (mm/mm); and PAWC are crop specific parameter and in this case, it’s for maize (mm/mm), LL stands for 
maize lower limit (mm/mm), KL stands for maize water conductivity between soil layers (/day), XF stands for maize extinction 
coefficient, pH depicts the soil pH, Carbon (total %) is the soil organic matter percentage 
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Table 3 Soil physical, chemical, and organic properties for farm at SEPAC 

SEPAC (39° 2' 28.64'' N, 85° 31' 24.24'' W) 
Depth BD AD LL 15 DUL SAT KS LL KL XF PAWC pH Carbon 
(cm) 

        
(0-1) 

 
  

0-15 1.42 0.08 0.233 0.365 0.420 38.76 0.233 0.06 1.000 0.132 5.90 2.281 

15-30 1.54 0.08 0.230 0.335 0.385 27.37 0.230 0.06 0.876 0.105 5.80 1.041 

30-60 1.59 0.08 0.233 0.324 0.375 17.72 0.235 0.06 0.748 0.089 5.70 0.590 

60-90 1.64 0.08 0.237 0.316 0.355 14.05 0.264 0.04 0.602 0.052 5.75 0.374 

90-120 1.68 0.08 0.228 0.304 0.340 15.87 0.291 0.01 0.516 0.013 5.94 0.295 

120-150 1.68 0.07 0.224 0.300 0.340 17.01 0.299 0.00 0.509 0.001 6.02 0.287 

150-180 1.69 0.07 0.219 0.294 0.340 18.56 0.294 0.00 0.000 0.000 6.12 0.277 
BD stands for bulk density (g/cc), AD stands for Air dry (mm/mm), LL15 stands for wilting point at 15 bars (mm/mm), SAT stands for 
saturated water content (mm/mm), DUL stands for drained upper limit (mm/mm), KS stands for saturated soil conductivity (mm/mm), 
LL stands for lower limit (mm/mm); and PAWC are crop specific parameter and in this case, it’s for maize (mm/mm), LL stands for 
maize lower limit (mm/mm), KL stands for maize water conductivity between soil layers (/day), XF stands for maize extinction 
coefficient, pH depicts the soil pH, Carbon (total %) is the soil organic matter percentage 

Table 4 Soil physical, chemical, and organic properties for farm at PPAC 

PPAC (41° 27' 3.61'' N, 86° 56' 28.51'' W) 
Depth BD AD LL 15 DUL SAT KS LL KL XF PAWC pH Carbon 
(cm) 

        
(0-1) 

 
  

0-15 1.36 0.06 0.170 0.286 0.430 77.75 0.170 0.06 1.000 1.360 6.00 3.123 

15-30 1.45 0.05 0.160 0.267 0.400 73.37 0.160 0.06 1.000 1.450 5.95 1.979 

30-60 1.47 0.05 0.158 0.257 0.395 69.23 0.158 0.06 1.000 1.472 5.93 1.418 

60-90 1.51 0.04 0.142 0.232 0.380 73.37 0.160 0.05 1.000 0.072 6.05 0.874 

90-120 1.53 0.03 0.118 0.200 0.380 90.4 0.156 0.03 1.000 0.044 6.24 0.607 

120-150 1.53 0.03 0.114 0.196 0.380 96.92 0.163 0.02 1.000 0.033 6.32 0.604 

150-180 1.53 0.03 0.109 0.190 0.380 105.7 0.171 0.01 1.000 0.019 6.42 0.600 
BD stands for bulk density (g/cc), AD stands for Air dry (mm/mm), LL15 stands for wilting point at 15 bars (mm/mm), SAT stands for 
saturated water content (mm/mm), DUL stands for drained upper limit (mm/mm), KS stands for saturated soil conductivity (mm/mm), 
LL stands for lower limit (mm/mm); and PAWC are crop specific parameter and in this case, it’s for maize (mm/mm), LL stands for 
maize lower limit (mm/mm), KL stands for maize water conductivity between soil layers (/day), XF stands for maize extinction 
coefficient, pH depicts the soil pH, Carbon (total %) is the soil organic matter percentage 
 

Table 5 Effect and interaction of different treatments on corn yield 

Treatments p-value 
Planting date <0.0001 

Nitrogen <0.0001 

Irrigation rules <0.0001 

Location <0.0001 

Weather scenario <0.0001 

Planting date * Nitrogen <0.0001 

Planting date * Irrigation rules >0.15 
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Nitrogen * Irrigation rules <0.0001 

Location * Weather scenario <0.0001 

Planting date * Location <0.0001 

Nitrogen * Location <0.0001 

Irrigation rules * Location 0.001 

Planting date * Weather scenario <0.0001 

Nitrogen * Weather scenario <0.0001 

Irrigation rules * Weather scenario >0.15 

Planting date * Nitrogen * Irrigation rules >0.15 

Planting date * Nitrogen * Location <0.0001 

Planting date * Irrigation rules * Location <0.0001 

Nitrogen * Irrigation rules * Location <0.0001 

Planting date * Nitrogen * Weather scenario <0.0001 

Planting date * Irrigation rules * Weather scenario 0.04 

Nitrogen * Irrigation rules * Weather scenario >0.15 

Planting date * Location * Weather scenario 0.002 

Nitrogen * Location * Weather scenario 0.013 

Irrigation rules * Location * Weather scenario >0.15 

Planting date * Nitrogen * Irrigation rules * Location >0.15 

Planting date * Nitrogen * Irrigation rules * Weather scenario >0.15 

Planting date * Nitrogen * Location * Weather scenario >0.15 

Planting date * Irrigation rules * Location * Weather scenario >0.15 

Nitrogen * Irrigation rules * Location * Weather scenario >0.15 

Planting date * Nitrogen * Irrigation rules * Location * Weather scenario >0.15 
It is to be noted that p-value < 0.0001 signifies that the variable had significant effect on response variable. A p-value between 0.0001 
and 0.15 suggests that the variables might have significant effect on response variable under certain conditions and number of 
replications. While the p-value > 0.15 signifies that there is no significant effect of variables on the response variables. 


