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Abstract.  

In the 21st century agriculture has the unique responsibility to provide food, fuel, fiber and feed 
for the growing population under the stress of climate change and diminishing natural resources. 
This is a feat that will take considerable change to the sustainability of such practices. One such 
feat is the idea of assessing phenotypic expression of complex traits in response to environmental 
factors. This idea elevates the use of phenotyping and proximal remote sensing to quantitatively 
monitor nitrogen (N) stress throughout the growing season in irrigated and rainfed production 
systems. Therefore, the purpose of this study is to conduct a preliminary analysis that leverages 
the NU-Spidercam, field phenotyping facility, to explore the performance of N management 
techniques. The study was located at the Eastern Nebraska Research, Extension, and Education 
Center, near Mead, NE and consisted of two experiments in the years 2022 and 2023. The 
experiments consisted of irrigated and rainfed plots that received varying rates of N fertilizer to 
simulate a control, split, and full rate (2022: 0N, 80/80N, 200N; 2023: 0N, 50/100N, 150N). Data 
collected at the NU-Spidercam facility came from three major components: an automated cable-
suspended sensing platform, Subsurface Drip Irrigation (SDI) system, and an onsite weather 
station. The sensors relevant to this study included a multispectral (Visible Near-Infrared, VNIR) 
camera, a VNIR spectrometer coupled with a bifurcating fiber optical cable, and a LIDAR (Light 
Detection and Ranging) sensor. These sensors captured plot scale crop canopy data used in this 
study. Canopy height was calculated from LiDAR point clouds by subtracting the distance from 
the sensor to canopy from the distance from the sensor to the ground. The vegetation index, 
NDVI-Red Edge (790/730 nm) was calculated from the incoming and canopy-reflected solar 
irradiance. In this study, it serves as a standard spectral trait for canopy conditions throughout the 
growing season. The focus of this preliminary analysis on the effect of N rate in irrigated and 
rainfed maize production on plant health and physical trait assessment. The weather-related 
patterns in 2022 and 2023 including air temperature, total rainfall, and shortwave solar radiation 
were summarized. The mean grain yield for each treatment from the two experiments assess the 
difference in yield for each nitrogen rate x water combination. 
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Main Body 

In the 21st century agriculture has the unique responsibility to provide food, fuel, fiber and feed 
for the growing population under the stress of climate change and diminishing natural resources. 
Therefore, the development of management practices balancing both practicality and 
sustainability are instrumental to the present and future challenges in agriculture. The rise of 
enhancing technology for sustainable purposes is one of the fore fronting drivers of the digital 
agriculture movement.  

Digital agriculture, otherwise known as “Smart Farming,” is defined as the use of data-driven 
technologies to aid in precise, site-specific decision making for agricultural producers (Wolfert, S., 
et al., 2017). These technologies include but are not limited to sensors, GPS, drones, robotics, 
Internet of Things (IOT), artificial intelligence (AI), and decision support systems. The emphasis 
on leveraging such technology with agricultural production is to boost global food production, 
improve productivity, and potentially ease the pressures of resource demand (Wolfert et al., 2017; 
Walter et al., 2017; MacPherson et al., 2022). Regarding improving resource management 
techniques, advancements in technology could provide more precise methods for deciphering 
timing and stress detection across varying environments.    

Therefore, with nutrients playing a critical role in agricultural production, the management of such 
practices has become more influential now than ever before. The concept of sustainable nutrient 
management, especially nitrogen (N) as a crop input, has been studied for over half a century 
(Holland, K. H., & Schepers, J. S., 2010).  In the corn belt, N is categorized as an essential crop 
nutrient for corn production. In the last 40 years, data has shown a positive correlation between 
rising crop yields and increased use of fertilizers including N inputs (Kirk Hall, P., 2016). However, 
many areas within the corn belt are facing issues with the over application of N inputs in annual 
row crop production. The issue of over-application is important, environmentally and 
economically.  Both of which are the current main driving forces for sustainable practices at the 
field level regarding N management.   

From an environmental perspective, the role of nutrient management is more complex than simply 
applying less; it must consider its effect on an entire ecosystem of interactions. The introduction 
of nutrients, such as N, will impact and will continue to impact the overall health and ecosystem 
of soil as an interactive environment. Factors that can be impacted but are not limited to soil 
health, spatial properties, the microbial environment, the hydrological cycle, water quality, and 
temporal weather patterns. Therefore, when these factors are not considered in management 
plans for cropping systems, environmental issues will present themselves. Classic examples of 
such are natural bodies of water, the Gulf of Mexico, where the over application of N fertilizers 
has led to hypoxic zones (Franzen, D., et al., 2016). 

In Nebraska, a major environmental concern in the last several decades is the contribution of 
increased ground water nitrate (𝑁𝑂3

−)) levels due to the over application of N (Schepers, J. S., et 
al., 1997). It has become a public health issue as contaminated groundwater has reached unsafe 
levels (> 10 mg—N per liter) for drinking water. The consumption of high nitrate levels from 
groundwater has since been linked to methemoglobinemia and increased risk of cancer 
development (Ward, M. H., et al., 2018).   

Economically, the cost of crop inputs for producers continues to rise across the corn belt now 
more than ever. Therefore, these conditions have encouraged the adoption of the most efficient 
practices to reduce a producers input costs (Lory, J. A., & Scharf, P. C., 2003; Zhang et al., 2015). 
In consideration, the priorities of N management in recent years are to reduce environmental 
impact and increase profitability. Therefore, it has been suggested that producers try to identify 
and incorporate an Economic Optimum N Rate (EONR). EONR is defined as the rate at which 
crop yield rises, yet not large enough to cover the cost of additional N (Miguez, F. E., & 
Poffenbarger, H., 2022). Thismethodology would allow producers to minimize N losses, optimize 
yield, and profit for their operation. Therefore, to assess the success of N optimization, the concept 
of quantifying a producers N Use Efficiency (NUE), a comparison of applied synthetic N fertilizer, 
and grain yield (Teten, S. L., 2021), has since been incorporated to understand the efficiency of 
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such practices around N rates, application timing, and technology-based methods.   

However, agriculture production does come with certain challenges in determining the economic 
optimum N rate. A substantial one being in rainfed sites, where the variable rainfall creates a 
dynamic of both temporal and spatial variability (Teten, S. L., 2021). The quantification of N within 
an agricultural system is also problematic since it is needed in such high demand and is influenced 
by environmental interactions leading to loss within the system. Therefore, with the digitalization 
of agriculture and the integration of a multitude of high-resolution data layers, site specific 
management can be improved upon for both irrigated and rainfed environments.  

In consideration to these production systems, the assessment of plant health via stress 
manifestation by current technology within production systems is of much concern. As for nutrient 
management the quantification of abiotic stress is often broken down into questions of when and 
how. When is the critical timing of nutrient application and how does the rate of nutrient used 
affect stress manifestation over time. The next question is how does the management practices 
of choice impact stress over time. Currently, these questions have been approached by 
incorporating a variety of sensors to quantify plant health over time.  

The use of sensor-based N management techniques is one way to incorporate the assessment 
of N demand at the plant level across a field site. This involves the agronomic application of 
canopy reflectance to correlate with leaf pigmentation as an indicator of plant properties from an 
optical perspective (Gausman, H. W., et al., 1975). These types of methodologies often 
incorporate vegetation indices (VIs) as indicators of plant health metrics. There have been many 
advancements of these methods to quantify N stress at the field scale. A prominent example of 
such is the development of multispectral remote sensing via unmanned aerial vehicles (UAVs) to 
provide real-time N status and detection of N stress in crop systems (Cai, Y., et al., 2019).  

It is important in the deployment of these techniques to best understand the interactions between 
N and water in both irrigated and rainfed production systems.  

 However, challenges to these systems are,  

• A system that involves the coupling of physiological aspects with the remote sensing 

techniques. 

• Reliance of vegetative issues that do not precisely assess the N and water stress 

relationship.  

• How does the physiological perspectives impact stress 

• More precisely account for the stress in irrigated and non-irrigated production.   

In Nebraska alone, there are 5.278 million irrigated acres and 4.022 million rainfed acres 
dedicated to corn production recorded in 2017 (N.A., Accessed 2024). Given the influence of both 
cropping systems on state and global corn production, it is essential to provide managed plans 
that are designed to uphold precision and account for the environmental factors that play a vital 
role in nutrient interactions. This concept has long been researched within the past decade and 
is making vast strides with the continued development of technology-based applications. These 
applications have been incorporating plant phenomics with the goal of precise cultivation. Plant 
phenomics was designed to incorporate finer methods of inspection of high-dimensional 
phenotypic data relating genes and desirable traits for plant growth, performance, and 
composition (Tao, H., et al., 2022). Therefore, phenotyping capabilities and methods have since 
appealed to the development of precise cultivation methods. The idea is to leverage plant 
phenotyping’s ability to generate data that is of high-throughput, accurate, repeatable, and novel 
acquisition technologies (Tao, H., et al., 2022).  

Phenotyping and remote sensing in a combined effort will modernize the relationship between 
phenotypic characteristics and the given environment. Remote sensing technology is defined as 
the acquisition of information without contact (Navalgund, R. R., et al., 2027). This type of data 
collected via sensors can be both quantitative and qualitative regarding plant characteristics. In 
the field of plant phenotyping, the collection of proximal and remote sensing data has become a 
fitting implement for nondestructive and repeatable measures. This allows for data to be collected 
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across spatial, temporal, and spectral scales further increasing the dimensionality of phenotyping 
data (Tao, H., et al., 2022).  

The evaluation of management practices under a system that utilizes phenotypic data collection 
and proximal remote sensing will quantify the effect of said practices on plant traits. Likely, the 
plant traits contribute to production and resource use efficiency at the interaction of plant growth 
given the environment (Machwitz, M., et al., 2021). In context to resource management, the 
phenotypic data collected gives insight into the target traits that remote sensing tools have been 
developed for. Therefore, this insight will likely allow the tools to be improved upon creating more 
sensitive and precise tools.  The intersection of these two fields of science is demonstrated by 
RTMS models, developed by the remote sensing community, that have the capabilities to account 
for non-parametric models designed for uncertainty estimation in N concentration estimates 
(Berger, K., et al., 2022) developed from information on plant physiology and phenotyping.   

The use of phenotyping techniques coupled with proximal remote sensing for resource managed 
would likely advance the assessment of nutrient induced abiotic stress within the field site. A study 
of such has been conducted regarding field-based scoring of soybean iron deficiency chlorosis. 
The study leveraged RGB imaging collected via a high-throughput field phenotyping platform to 
process images, in real time, and computer scoring for IDC symptomatology identification. The 
focus of iron induced chlorotic pronunciation in soybeans occurs with distinct color changes in the 
leaves at a specific growth stage. Therefore, the capturing of Red Green Blue (RGB) images 
allows for the capabilities to extract color-based information to automate the IDC scoring for 
severity of stress manifestation within a field site (Bai, G., et al., 2018). An approach that assesses 
abiotic stress utilizing both remote sensing and plant phenotyping improves productivity and 
accuracy for IDC screening.  

A study of such elevates plant phenotyping as a diagnostic tool for identifying plant stress. In 
assessing plant health issues with plant phenotyping in conjunction with remote sensing has the 
potential to assess the adaptability of plant species to various abiotic stresses. How this 
adaptability is assessed over time in varying environments is an advantage of this system. These 
concepts are explored in the following context to the precise management of N inputs in irrigated 
and rainfed maize production systems in Nebraska. Therefore, the objective of this study include 
the use of high volume, multifaceted data to explore the impact of N rate and irrigation presence 
on biophysical plant traits and plant health metrics overtime. This study will also examine the 
strengths and limitations of field phenotyping and remote sensing techniques for N management 
strategies in maize production. The conjunction of field phenotyping and remote sensing may 
uncover finer details on the overall performance and timing of N rates in irrigated and rainfed 
production systems.   

  

Methods 

Experimental Design 

The study was conducted at the NU-Spidercam Field Phenotyping facility (NU-Spidercam, Bai et 
al., 2019), located at the Eastern Nebraska Research, Extension, and Education Center, Mead, 
NE (41  08’ 44.4” N, 96 26’20.6” W, altitude 369 meters above sea level) in 2022 and 2023. The 
cumulative precipitation from May to September in 2022 and 2023 were 306 mm and 349 mm.  

Field experiments were conducted on maize (Zea mays L.) details of which are outlined in Table 
1. Each experiment followed a Complete Randomized Block Design with 24 plots.  Each  plot was 
6.1 m long and 4.6 m wide accommodating 6 rows of crops spaced 0.76 m apart. Grain yield data 
was collected from the central two rows of each plot spanning a length of 3.1 m. 

Table 1. Design and key information of the two field experiments for maize production. 

EXP # EXP. Name Planting 
Density                              
(plant/ha) 

Treatments Plot 
Count 

Planting/ 

Harvesting  

Nitrogen 
Fertilizer Rates 
(bu/ac) 

Total 
irrigation 
depth (mm) 
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Data collection and preprocessing 

The NU-Spidercam facility is a Field High Throughput Plant Phenotyping (FHTPP) system made 
of three major components. The first being an automated cable-suspended sensing platform 
equipped with 0.4-hectare scan coverage. Secondly, there is a Subsurface Drip Irrigation (SDI) 
system for precise irrigation at a depth of 0.3 m. Lastly, approximately 50 m from the site is 
weather station (Bai, G., et al., 2019). The sensors relevant to this study include a multispectral 
(Visible Near-Infrared, VNIR) camera, a VNIR spectrometer coupled with a bifurcating fiber optical 
cable, and a LiDAR (Light Detection and Ranging) sensor. These sensors captured plot scale 
crop canopy data used in this study.  

Canopy height was calculated from LiDAR point clouds by subtracting the distance from the 
sensor to canopy from the distance from the sensor to the ground. The VI used in this study is 
calculated from the measured incoming and reflected solar energy measured by the VNIR 
spectrometer. In this study, it serves as a standard spectral trait for canopy conditions throughout 
the growing season.  

 𝑁𝐷𝑉𝐼 − 𝑅𝐸𝐷 𝐸𝐷𝐺𝐸 =  
(𝑁𝐼𝑅− 𝑅𝐸)

(𝑁𝐼𝑅 + 𝑅𝐸)
     (1) 

where  

 𝑁𝐼𝑅 = 𝑁𝑒𝑎𝑟 − 𝐼𝑛𝑓𝑟𝑎𝑟𝑒𝑑 (770 𝑛𝑚) 𝑤𝑎𝑣𝑒𝑙𝑒𝑛𝑔𝑡ℎ𝑠 

 𝑅𝐸 = 𝑅𝑒𝑑 𝐸𝑑𝑔𝑒 (730 𝑛𝑚) 𝑤𝑎𝑣𝑒𝑙𝑒𝑛𝑔𝑡ℎ𝑠 

The accuracy of the sensor readings was verified with ground truth measurements further 
specified in (Bai, G., et al., 2019).  Weather data was collected by the onsite station at 1-minute 
intervals, including Air Temperature, total rain, and Shortwave solar radiation.  

Statistical analysis 

The focus of this preliminary analysis on the effect of nutrient rate, N, in irrigated and rainfed 
maize production is plant health and physical trait assessment. Therefore, the comparison of crop 
health at each rate and water presence was visualized in time series plots (fig.1). This represents 
the temporal relationship of crop health, quantified as a VI, over time for the nutrient and water 
management combinations. This was visualized for each growing season. Correlation plots 
further explored the VI in context of the canopy height for management combination in the years 
2022 and 2023 (Fig.2). Linear regression and coefficients of determination (R2) were used to 
describe the relationship between the select VI and canopy height. Lastly a heat map was used 
to compare weather related patterns in 2022 and 2023 including air temperature, total rainfall, 
and shortwave solar radiation (Fig.3).  Mean grain yield for each treatment from the two 

date 

I Maize 
Nitrogen/ 

 Water 2022 

Maize 80k 1 genotype  24 May 13 Full: 200 Full:173  

   

2 water levels  Oct. 12 Split: 80/80  Rainfed:0    

3 nitrogen 
levels 

  None:0  

    

    

II Maize 
Nitrogen / 

Water 2023 

Maize 80k 1 genotype  24 May 19 Full: 150 Full:173  

   

2 water levels  Sept. 28-29 Split: 50/100 Rainfed:0    

3 nitrogen 
levels 

  None:0  
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experiments is summarized (Table 2) and Tukey’s Honest Significant Difference post hoc test 
was performed to assess the difference in yield for each treatment combination. 

Figures 

 
Fig 1. Time series of calculated Red-Edge NDVI (730/770 nm) throughout the growing season for each N rate between the 

irrigated and rainfed plots (Growing seasons: A = 2022, B = 2023). The lines are for each plot while the colors differentiate 

the irrigated and rainfed plots. For the split application, 1A (80/80), the second application occurred on July 1, 2022, at V8 

phenological staging. While 1B (50/100), the split application occurred on July 3, 2023, at V6 – V9 phenological staging. 
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Fig 2. Correlation between the calculated Red-Edge NDVI (730/770 nm) and canopy height (m) (Growing seasons: A = 2022, 
B = 2023). Each data point represents data from each plot for everyday Red-Edge NDVI (730/770 nm) was calculated 
through the growing seasons. Different colors of the data points indicate the N rates. Linear regression lines between Red-
Edge NDVI and canopy height are also shown with coefficients of determination (R2). 

Year Weather Metric May June July August September 

2022 Air temp. (Â°C) 16.77 22.98 24.74 23.85 19.75 

 Shortwave solar radiation (W/m^2) 207.84 266.04 268.90 240.09 194.12 

  Total Rainfall (mm) 3.39 2.68 0.63 2.25 0.96 

2023 Air temp. (Â°C) 18.54 23.24 22.88 23.26 20.39 

 Shortwave solar radiation (W/m^2) 242.86 269.48 239.00 221.42 185.70 

 Total Rainfall (mm) 0.11 2.73 6.32 1.86 0.33 
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Fig 3. A heat map of mean weather metrics for each month of the growing season (May – September) in years 2022 and 
2023. The red – green color scale was applied to show the temporal relationship of each metric, green is equivalent to the 
high value while red is equivalent to the low value.  

 

 

Table 2. Mean of maize grain yield of each treatment from the two-field experiment. Different letters indicate the mean grain 

yields were significantly different at (p < 0.05) using ANOVA test with Tukey’s Honest Significant Difference.  

 

EXP # Year Treatment Mean Grain yield 
(Bu/ac)  

I 2022 200N, Irrigated 298.84a     

  

80-80N Irrigated 297.02a     

  

0N Irrigated 253.95b     

  

0N, Rainfed 219.43c     

  

80-80N, Rainfed 209.05c     

  

200N, Rainfed 208.23c 

II 2023 150N, Irrigated 170.62a     

  

50-100N, Irrigated 143.72ab     

  

0N, Irrigated 141.48ab     

  

150N, Rainfed 125.91ab     

  

50-100N, Rainfed 125.27b     

  

0N, Rainfed 120.55b 

 

Conclusion  

This study introduced a preliminary analysis of utilizing field phenotyping in conjunction with 
remote sensing to explore the performance of N management techniques in irrigated and rainfed 
maize production. Two maize field experiments involving irrigation presence and N treatments 
were conducted at the NU-Spidercam facility in the years 2022 and 2023. In 2022, the irrigated 
plots had significantly higher grain yields than the rainfed plots. Strong linear correlations between 
NDVI-Red Edge and canopy height  in irrigated plots (0N: 0.69, 80-80N: 0.87, 200N: 0.88) while 
in rainfed plots (0N: 0.68, 80-80N: 0.75, 200N: 0.76). In 2023, the plots with full and split N 
applications showed significantly higher yield than the rainfed plots with no N. The linear 
correlations between NDVI-Red Edge and canopy height in the irrigated and rainfed plots 
appeared to be much week ranging from 0.22 – 0.33. The preliminary comparison between the 
2022 and 2023 growing seasons shows inconsistencies which may be further explained by the 
weather patterns during each season. In 2022, there was higher amount of rainfall during the 
beginning of the season. While in 2023, there was minimal rainfall in the beginning of the season 
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which led to emergence issues within the plots. In July 2023, rainfall increased rapidly while in 
2022 the season remained dry with a total of 2.88 mm of rain between July and August.  
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