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Abstract 
Estimating soil nutrient levels, especially immobile nutrients like P and K, has been a primary 
activity for providers of precision agriculture services. Soil nutrients often vary widely within fields 
and growers have been eager to manage them site-specifically.  There are many causes of the 
variability, including pedogenic factors such as soil texture, organic matter, landscape position, 
erosion, and other natural factors that have resulted in an accumulation of unused nutrients in 
some areas of the field, while in other areas of the field nutrient levels are low. There are also 
anthropogenic, man-caused nutrient variations.  Lab-analyzed soil sampling is a key component 
of soil nutrient management, however only a tiny fraction of the soil within a field can be sampled 
and measured. Zone sampling is a method that acknowledges the pedogenic nature of the 
variability and attempts to identify zones where nutrients vary based on productivity and natural 
soil causes.  Alternatively, the approach that accounts for the bulk of USA precision sampling is 
based on a standardized sampling pattern, typically a 1 ha systematic grid.  Grid sampling does 
not consider the pedogenic factors between sample points and uses various interpolation 
methods to provide estimates between the sample points. The spatial variations of soil nutrients 
within 1 ha have been widely reported. The errors caused by not identifying these variations and 
simply interpolating the point data can be significant, sometimes greater than the errors from a 
single rate. One method of reducing these errors is co-kriging. This geostatistical approach uses 
a densely sampled dataset, typically from a proximal sensor, along with the grid sampled nutrient 
tests to estimate nutrient levels between the grid points. One of the key limitations of co-kriging is 
the large number of samples at various spatial distances needed to create the appropriate 
geostatistical model for each field.  As a result, co-kriging has not been commercially available 
for precision agriculture and has been limited to research endeavors.  Recently, Veris 
Technologies has tested an approach similar to co-kriging but with several important differences. 
One, instead of one soil sensor data layer as has been the case with most co-kriging studies, the 
new approach investigates multiple soil attributes to a soil profile depth of 60 centimeters.  This 
improves the opportunity for determining the pedogenic variables that drive nutrient variations. 
Two, these sensor layers provide important information about the nature of overall spatial 
variability in the field, providing the rationale for interpolation options. Three, in addition to filling 
in the space between sample points with grid interpolation or sensor-derived data, the new 
approach allows the use of nutrient field average values when appropriate to minimize large 
errors. Four, machine-learning techniques are applied to optimize the estimations. The novel 
approach has been tested on several USA fields and compared to conventional soil sampling. 
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Introduction 
 
Estimates of nutrient levels in US farm fields is typically accomplished from lab-analyzed soil 
samples.  Modern methods using GPS are primarily done using a 1 ha grid with 5-10 soil cores 
collected in a 3-6 m radius, resulting in a lab-analyzed sample every 100 m. Many US soil testing 
laboratories participate in accreditation services, such as the North American Proficiency Testing 
(NAPT). As a result, these labs provide highly accurate and repeatable soil measurements at the 
sample sites.  However, 95% of the field’s soil is not sampled.  Various methods of interpolating 
the results of the grid samples are employed to estimate the values of the unsampled 
areas.  Research has found that these estimates, while accurate at the sample locations, can be 
highly inaccurate between sample sites due to the unpredictable nature of the soil nutrient 
variability (Bianchini and Mallarino, 2005; Brouder et al., 2005).  In some cases, using a field 
average uniform rate had lower errors than 1 ha grid samples, when accuracy of grid estimations 
were validated using independent samples (Lund et al., 2004).  Sensors have been developed 
that proximally sense soil properties such as pH, organic matter, and clay content, but no soil 
sensor for immobile nutrients such as soil test phosphorous (P) have been proven effective. 
Nutrients such as P are tightly bound to the soil colloid and require chemical extraction.   
Although grid-sampling is desirable from a service-provider standpoint due to its simplicity, it 
ignores the underlying soil properties that can cause nutrient variations. Understanding basic 
agronomic principles of how crops use nutrients has led to generalized observations about 
nutrient variability. With the advent of yield monitoring in the late 1990’s, growers found that the 
poorer yielding areas of their fields frequently had higher nutrient levels than better producing 
areas, likely because under a uniform application of fertilizer the poorer producing areas stored 
unused nutrients, while more productive areas depleted their nutrient availability. Nutrient 
variability has also been found to vary with soil erosion and deposition, differences in parent 
material, and other pedogenic phenomena (Franzen, 2018). Management zone sampling 
methodologies were proposed to help capture these nutrient variations (Fraisse et al., 2001, 
Jaynes et al., 2005, Franzen, 2018) Proximal sensing of soil properties such as clay, because of 
its large role in water-holding capacity and productivity, was used to improve nutrient sampling 
efforts (Kitchen et al., 2005).  The relationship between any single soil property and nutrients is 
not consistent, however.  Relationships can be positive, inverse, and insignificant (Huang et al., 
2018; Maxton and Lund, 2020). 
Grid sampling is growing in popularity and the majority is a 1 ha grid cell size. Based on the body 
of nutrient variability research showing wide variations within 1 ha, one can conclude that many 
fertilizer scripts over and under apply nutrients within the grid cells. This leads to the question: 
what can be done to improve grid sampling estimations? Wide and sudden nutrient variations 
between sample points make it impossible for interpolations alone to estimate accurately. 
Pedogenic soil properties may be able to help, but soil properties don’t always relate to nutrients.  
There can be anthropogenic factors such as misapplications, old livestock pens, merged fields, 
etc. that are the major cause of nutrient variations in some fields. 
Recently, Veris Technologies tested a nutrient management approach using a sensor probe that 
measures multiple pedogenic soil properties in the top 60 cm, including sensors for soil OM, soil 
texture, soil moisture, and compaction. These soil properties relate to productivity and can have 
a relationship to how soil uses, loses, and stores crop nutrients. The objective was to determine 
if grid sampling can be improved by mapping multiple pedogenic factors and applying machine 
learning techniques to better understand soil-nutrient relationships, with a goal of improving 
estimations between lab sample locations.  
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Materials and Methods 
 
Sensing Technology and Calibration 

The Veris CoreScan™ is a hydraulically-activated probe that utilizes four different sensors to 
characterize the soil profile in 1 cm increments to a depth of 60 cm in automatic mode. In manual 
mode the CoreScan can collect 0-90 cm measurements. The sensors on the CoreScan probe are 
as follows: Soil EC from a dipole array cone tip, soil reflectance from 660nm and 950nm 
wavelengths of the visible and near infrared (Vis-NIR) spectrum, capacitance/dielectric sensor, 
and a load-cell based penetrometer (Figures 1 and 2).  These sensors relate to soil texture, soil 
organic matter (SOM), soil moisture, and compaction, respectively. In combination and with lab-
analyzed soil samples, they can be used to model: bulk density, horizon depth, profile water-
holding capacity, depth to limiting layer, and more.  

    
Figure 1. Veris CoreScan platform--UTV mounting       Figure 2. CoreScan sensing technologies 
 
The CoreScan is automated to deliver high through-put. Each insertion is controlled and 
monitored from a V-Sense controller and tablet PC running CoreScan data acquisition software.  
To prevent probe damage, the system is designed to stop inserting when insertion force reaches 
a user-selectable threshold, typically 7.5 MPa for a UTV mounting and 12 MPa for a tractor 
mounted system. In “continuous” mode the CoreScan senses when the vehicle has stopped and 
automatically inserts the probe, with no action from the operator.  Each cycle takes approximately 
50 seconds including travel time between insertions, which provides a capacity of ~25-30 ha/hour 
on a .4 ha spacing.   Profile logs from each sensor can be viewed during data collection and post 
data collection (Figures 3a-d). 

                            
Figure 3a-d: a. soil EC    b. Infrared reflectance   c. soil moisture      d. insertion force 
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Field data collection 
In the fall of 2023 and spring of 2024, sensor probing and nutrient sampling was conducted on 10 
fields in five US cornbelt states. 3 fields were in the central cornbelt (CCB), 2 in the eastern 
cornbelt (ECB), 3 in the northern cornbelt (NCB) and 2 from the western cornbelt (WCB).  All 
fields were sensor-probed (CoreScan) to a depth of 60 cm on a .4 ha grid. A minimum of six 0-15 
cm calibration samples were collected from each field, typically on a 1 ha grid with an average of 
10 samples per field. Samples were lab-analyzed for available and available plus reserve 
phosphorus (P1 and P2), potassium (K), and soil pH, along with organic matter (OM) and cation-
exchange capacity (CEC).  One field included additional validation samples for use in validating 
various sampling and sensing approaches. 
 

Results and Discussion 
 
Lab-analyzed soil properties 
The lab measurements showed that across all fields the soil nutrients ranged widely, although 
variations within some of the fields were low (Table 1).   

 
 
Sensor measurements and relationship to nutrients 
Whether it’s appropriate to use pedogenic soil properties in a nutrient script is largely dependent 
on the strength of the relationship between the measured nutrients and available pedogenic soil 
attributes. That relationship in turn is largely dependent on soil formation and historical 
productivity differences in the field that has led to nutrients being mined, banked, or lost according 
to variations in the soil attributes. The correlation between the CoreScan’s suite of soil sensors 
and two primary nutrients and pH was evaluated, and the best correlation identified (Table 2). 
Color coding shows both the strength of the relationship and whether it was inversely or positively 
correlated. The relationships to P and K were more variable, with darker/higher OM and higher 
EC/clay content soils having both positive and inverse relationships. Soil pH was more 
consistently positively correlated with EC and inversely to optical reflectance. That follows an 
expected pattern—soils with more clay and OM are more highly buffered to resist acidification.  
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The minimal acceptable correlation to be included in further analyses and possible nutrient 
estimations was arbitrarily set at .50 r threshold. For each nutrient and field that met this threshold 
the average prediction errors for each lab-measured soil chemical property based on the Root 
Mean Square Error (RMSE) of the calibration and the quality of the calibration expressed as Ratio 
of Performance to Deviation (RPD: standard deviation/RMSE) are shown in Table 3 and cross-
validated results in Table 4.  
 

          
 
One of the objectives of this study was to determine whether using several sensors mapping 
multiple pedogenic soil attributes could explain nutrient variability better than a single sensor and 
fewer soil attributes. The single sensor chosen was soil EC as EC maps are widely available and 
have been shown to relate well with soil texture, water and nutrient-holding capacity, and in turn 
productivity (Kitchen et al., 2003).  Data used in the analysis as the single variable was the 0-60 
cm depth from the CoreScan.  The multiple sensor dataset included EC, Vis-NIR optical, moisture, 
insertion force, each at the 0-15, 15-30, 30-60, and 0-60 cm depths. Each sensor and each soil 
nutrient attribute was evaluated individually with bivariate regression. Results of the analysis show 
that measuring multiple potential soil attribute drivers triples the likelihood of discovering a 
mapped soil attribute that meets the nutrient correlation threshold (Table 5). 

 

Machine Learning 
The results shown in Tables 3-5 show promising results of improving understanding of nutrient 
variability by measuring multiple pedogenic-based soil properties throughout the 0-60 cm profile. 
However, considering the sensor measurements one at a time using simple regression is unlikely 
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to be the optimal way to deal with the complexities of soil nutrient and pedogenic soil variations. 
In an initial Machine Learning exercise on this dataset, 100 samples were used for a training 
dataset in a Gradient Boosted Trees machine learning model (Figure 4a).  Fifty samples were 
used for validation (Figure 4b).  While this exercise demonstrated increased R² and comparable 
RPD’s due in part to an increased range of each soil property, it resulted in higher RMSE’s (Table 
6). By reducing the sampling and lab-analysis cost by 1/3, a lower level of accuracy might be 
acceptable in some situations. The fields in this project were typically 100-200 km apart, all farmed 
by different operators and different fertilizing and production practices. Machine learning 
approaches also need to be evaluated in a real-world setting, such as a single 1000 ha farm 
operation where soil types and historical fertilization practices have likely been more similar. 

 
Figure 4a. ML training model for P1.           Figure 4b. Validation scatter plot for ML-predicted P1. 
 

 
 

 

Fertilizing scripts using Pedogenic-Enhanced Grid Sampling 
The effectiveness of a pedogenic-based grid sampling approach depends on accomplishing these 
steps: 

1. Overall methodology must be science-based, transparent, reproduceable, and validated. 
2. Accurate lab-analyzed soil samples are the nutrient foundation—collecting 8-12 geo-

referenced cores per sample, analyzed in an accredited laboratory. 
3. Accurately measured, multiple pedogenic soil properties: there are many causes of 

nutrient variability and measuring more possible causes improves likelihood of discovering 
the proper relationships. 

4. Relationships between soil nutrients and pedogenic soil properties discovered, 
understood, and advanced, likely using machine learning. 

5. At each spot within a field, for example each 10 m x 10 m cell, there is a choice of using: 
the interpolated estimate from a grid sample, a pedogenic soil-based calibration estimate, 
field average value, or a combination. A 1 ha grid cell graphic depicts these choices and 
the “dials” that can be used to adjust estimates (Figure 5). 
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Figure 5. 1 ha grid cell example of Pedogenic Enhanced Grid Sampling, showing options for 
estimating nutrient estimations at each 10m x 10m sub-cell. 
 
A variety of decision rules can be envisioned. Some are intuitive, such as closer proximity to the 
grid sample location favors using the interpolated estimate.  Similarly, the stronger the correlation 
between a soil nutrient and a pedogenic soil property, the more likely to include the estimate from 
the nutrient-pedogenic relationship. Minimizing estimation errors are a main goal, so wide 
variances of adjacent grid samples suggest caution in interpolating, as would major changes in 
pedogenic soil and topo attributes between grid samples. In situations where there is not an 
adequate soil-based estimate, and grid point interpolation shows risk, the field average level of 
the nutrient would likely be the safe alternative. Additional datasets including topography and crop 
imagery and innovative machine learning approaches are needed to optimize the decision-making 
script-creation.  
A basic version of the Pedogenic Enhanced Grid Sampling methodology was performed on Field 
WCB2.  This 24 ha field was grid-sampled on 1.6 ha and sensor-probed on .4 ha. The best 
correlation between CoreScan sensors and P1 was the IR 0-60 cm data with a .58 R². 25 
validation samples were collected. A calibration between the sensor probe and each nutrient was 
developed (Figure 6).   

 
Figure 6. WCB2 field with locations of: 1.6 ha grid samples, .4 ha sensors probe insertions, and 
25 validation sites. 
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A combination of sensor-estimated P1 and lab-measured P1 was created as follows: the P1 and 
IR 0-60 cm calibration estimated P1 was applied at the .4 ha CoreScan points and lab-measured 
P1 at the 1.6 ha points. A map was generated using inverse distance squared with a 33 m search 
radius for both lab-measured P1 and IR-estimated P1. In this simplified approach to the 
Pedogenic Enhanced Grid Sampling, radii were arbitrarily set and no “field average” amount was 
included. To evaluate the accuracy of the method, the interpolated lab-measured and sensor-
estimated P1 was compared to using only the interpolated lab-measured P1 at the 25 validation 
points. To compare those results with conventional interpolated grid samples, the P1 measured 
at the 1.6 ha grid samples was interpolated using a 150 m search radius and the interpolated 
estimate compared to the measured P1 at the 25 validation points.  Results show a 35% lower 
RMSE for including the pedogenic relationship between IR and P1. Maps of each estimate 
illustrate the additional detail and lowered error of adding data at the .4 ha points. (Figure 7). 
 

 
 
Figure 7. Pedogenic Enhanced Grid Sampling (left) and conventional grid sampling (right).  
 
 
A machine learning approach was developed using all P1 samples from all 10 fields, excluding 
the 25 validation points on WCB2, and using that estimate at the .4 ha points rather than the in-
field calibration. That exercise yielded an even lower RMSE: 20.2 ppm.  The acceptable accuracy 
level needed to provide useful information is open to debate. It’s possible the improvements over 
conventional grid sampling estimates would be enough to divide the field into low, medium, and 
high application ranges. It would be more probable to classify into two ranges, suggesting “ok to 
apply P” and “don’t apply P”.  Another consideration, especially from both economic and 
environmental perspectives, is the magnitude of errors.  Comparing estimated P1 to actual P1 at 
the 25 validation sites, conventional grid sampling had significantly more potentially harmful errors 
than the Pedogenic Enhanced Grid Sampling (Table 7).   
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Conclusions 
 
To investigate the potential of using soil sensing technology to improve grid sampling estimates 
of key nutrients, 10 fields in five US states were probed with a CoreScan multi-sensor probe and 
grid samples of two primary nutrients and pH were lab-analyzed. In-field correlations between lab 
samples and EC, optical, moisture, and compaction measurements in the 0-60 cm profile revealed 
that all evaluated soil chemical properties had a correlation coefficient above .50 r on 7 out of the 
10 fields. Multi sensor measurements were more frequently highly correlated than measurements 
from a single sensor. A machine learning (ML) technique was applied to the dataset with the goals 
of uncovering and utilizing soil-nutrient relationships, and to reduce soil sampling and analysis 
costs. While ML improved the correlation coefficients, results showed in-field relationships 
provided greater accuracy for these fields. The use of machine learning will continue to be 
investigated. A novel concept, termed Pedogenic Enhanced Grid Sampling, which uses a 
combination of interpolated grid samples, soil-based nutrient estimates, and field average levels 
was presented. An example field where this approach was tested using independent validation 
samples, showed a 35% reduction in P1 estimation errors and an elimination of the largest 
potentially economically and environmentally harmful errors versus conventional grid sampling. 
Additional research with additional fields, large datasets that include validation samples, and 
machine learning is needed to fully develop the Pedogenic Enhanced Grid Sampling approach. 

References 
 
Bianchini, A.A. and Mallarino, A.P., 2002. Soil-sampling alternatives and variable-rate liming for 
a soybean-corn rotation. Agronomy Journal 94(6) 1355-1366. 
Brouder, S.M., B.S. Hofmann, and D.K. Morris Mapping Soil pH: Accuracy of Common Soil 
Sampling Strategies and Estimation Techniques. Soil Science Society of America Journal March-
April 2005 Vol 69: pp. 427-441 
Fraisse C.W., Sudduth K.A., Kitchen N.R. Delineation of site-specific management zones by 
unsupervised classification of topographic attributes and soil electrical conductivity. Trans 
ASAE. 2001;44(1):155–166. 
Franzen, D. W. Soil Variability and Fertility Management. 2018 Precision Agriculture Basics. 
doi:10.2134/precisionagbasics.2016.0091 
Huang, H, Adamchuk, V. Biswas, A., Ji, W. and Lauzon, S. (2018) Analysis of Soil Properties 
Predictability Using Different On-the-Go Soil Mapping Systems. 14th International Conference on 
Precision Agriculture 
Jaynes D.B., Colvin T.S., Kaspar T.C. Identifying potential soybean management zones from 
multi-year yield data. Computers and Electronics in Agriculture. 2005;46(1-3):309–327.   
doi: 10.1016/j.compag. 2004.11.011 

Kitchen, N.R., S.T. Drummond, E.D. Lund, K.A. Sudduth, and G.W. Buchleiter. 2003. Soil 
electrical conductivity and other soil and landscape properties related to yield for three 
contrasting soil and crop systems. Agron. J. 95:483–495. doi:10.2134/agronj2003.0483 
Kitchen N.R., Sudduth K.A., Myers D.B., Drummond S.T., Hong S.Y. Delineating productivity 
zones on claypan soil fields using apparent soil electrical conductivity. Computer and Electronics 
in Agriculture. 2005;46(1-3):285–308. doi: 10.1016/j.compag.2004.11.012.  
Lund, E., Collings, K., Drummond, P., Christy, C. (2004) Managing pH Variability with on-the-go 
pH mapping. 7th International Conference on Precision Agriculture 
Maxton, C. Lund, E.  2020. Evaluating proximal soil sensors for measurement of soil physical 
and chemical properties. 2020 Virtual International Conference on Precision Agriculture.  


