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Abstract.  
High-dimensional data is commonly encountered in various applications, including genomics, as 
well as image and video processing. Analyzing, computing, and visualizing such data pose 
significant challenges. Feature extraction methods are crucial in addressing these challenges by 
obtaining compressed representations that are suitable for analysis and downstream tasks. One 
effective technique along these lines is sparse coding, which involves representing data as a 
sparse linear combination of a set of exemplars. In this study, we propose a local sparse coding 
framework within the context of a classification problem. The objective is to predict the label of a 
given data point based on labeled training data. The primary optimization problem encourages 
the representation of each data point using nearby exemplars. We leverage the optimized 
sparse representation coefficients to predict the label of a test data point by assessing its 
similarity to the sparse representations of the training data. The proposed framework is 
computationally efficient and provides interpretable sparse representations. To illustrate the 
practicality of our proposed framework, we apply it to agriculture for the classification of crop 
diseases. 
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Introduction 

Agriculture is an essential activity that supplies the basic necessities required for our survival. In 
addition, in many middle-income and low-income countries, agriculture is a foundational aspect 
of the national economy (Alston et al., 2014). The agricultural sector faces several challenges, 
with their effects being more pronounced in less-developed countries. These challenges include 
climate change, pests, crop diseases, and a growing population (Calicioglu et al., 2019). This 
paper focuses on crop diseases due to their critical impact on food security. Identifying and 
managing crop diseases is a central issue in agriculture, requiring expert knowledge and labor 
(Chaube et al., 2005). In recent years, signal processing and machine learning techniques have 
been used to assist experts in the time and cost intensive process of disease identification 
(Ferentinos et al., 2018, Haridasan et al., 2023, Shruti et al., 2019). 

We consider the setting where we have existing training data consisting of labeled examples of 
healthy and diseased plants. Using this data, our goal is to predict whether a new plant from the 
same category is healthy or not. The training data is assumed to be a collection of images, such 
as plant leaf images. Given this setup, a typical initial step is to use established image 
processing tools to extract useful features or obtain compressed representations that aid in 
disease identification (Antonini et al., 1992, Lowe et al., 1999, Nixon et al., 2019). Recently, 
machine learning and deep learning techniques have been widely used for image classification, 
largely due to the availability of large amounts of training data (Krizhevsky et al., 2017, 
Sheykhmousa et al., 2020). In this paper, we propose a local sparse coding approach for plant 
disease identification. Sparse coding is a signal processing framework where data points are 
represented as a combination of a few underlying components, known as atoms, which form a 
dictionary (Aharon et al., 2006, Olshausen et al., 1990). Specifically, the 𝒏 data points are 
represented as 𝒚𝟏, 𝒚𝟐, … , 𝒚𝒏, with 𝑨 = [𝒂𝟏, 𝒂𝟐, …𝒂𝒎] denoting the dictionary composed of 𝒎 
atoms. The goal of sparse coding is to represent the i-th data point as 𝒚𝒊 ≈ 𝑨𝒙𝒊, where 𝒙𝒊 is a 
sparse vector, meaning most of its entries are zero. Various techniques are used to promote 
sparsity (Foucart et al., 2013, Micchelli et al., 2013). In this paper, we employ a local sparse 
coding approach first proposed in (Tasissa et al., 2023) In this approach, beyond regular 
sparsity, the representation also aims to utilize nearby atoms. In addition, entries of the sparse 
vectors are non-negative and sum to 1 and can be equivalently modeled as probabilities. Once 
sparse coding is completed, the resulting sparse representations can be used for downstream 
tasks. The main contribution of this paper is a plant disease identification algorithm based on 
this local sparse coding approach. The core idea is to use sparse coding on the data or 
extracted features to obtain sparse representations of the data points. To classify a test plant as 
healthy or diseased, we first compute its sparse representation and then compare it to the 
sparse representations of labeled plants from different classes using the cosine similarity metric. 
Given two vectors 𝒙 and 𝒚 the cosine similarity between the two vectors is defined as    

,                                                     𝑠𝑖𝑚(𝑥, 𝑦) = &	⦁	)
*|&|**|)|*

                                                                (1)  
                                                                            
where 𝑥	⦁	𝑦 indicates the dot product of two vectors and ||	|| denotes the length of a vector.  
Local sparse coding  
Given 𝑛 data points represented as 𝑦,, 𝑦-, … , 𝑦., with 𝐴 = [𝑎,, 𝑎-, … 𝑎/] denoting the dictionary, 
sparse coding seeks to obtain sparse representations 𝑥,, 𝑥-, … , 𝑥. such that 𝑦0 ≈ 𝐴𝑥0. Here on, 
we assume the data points lie in ℛ𝒹. Hence, 𝐴 ∈ ℛ𝒹×𝓂 and 𝑥0 ∈ ℛ𝓂. In the typical setting, 
sparse coding solves the following problem to estimate 𝑥0 ∈ ℛ𝓂 (Lee et al., 2006): 

                                           𝑚𝑖𝑛
&!∈ℛ𝓂

			<|𝐴𝑥0 − 𝑦0|<-
- + 𝜆<|𝑥0|<,,                                                           (2) 

where ||𝑧	||- = A∑ 𝑧0-0   denotes the ℓ- norm of a vector and ||𝑧	||, = ∑ |𝑧0|0   denotes the  ℓ,  
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norm of a vector. The parameter 𝜆 is a regularization parameter that balances reconstruction of 
the data point 𝑦0 using the dictionary 𝐴 with the sparsity level of 𝑥0. The ℓ, regularization is one 
choice to promote sparsity of 𝑥0. There are also regularizers designed to promote structured 
sparsity (Elhamifar et al., 2011, Huang et al., 2009). In this paper, we adopt the local sparse 
coding approach in (Tasissa et al., 2023). We briefly highlight the differences of this approach in 
contrast to the standard ℓ, regularized problem. First, each 𝑥0 ∈ ℛ𝓂 has non-negative entries 
that sum to 1. From here on, the set 𝑆 represents the set of vectors in ℛ𝓂 with non-negative 
entries and that sum to 1. Second, in representing a data point 𝑦0 using the dictionary 𝐴, we 
seek sparse representations that put more weights on nearby atoms. More concretely, local 
sparse coding solves the following optimization problem to estimate 𝑥0 ∈ ℛ𝓂: 

                    𝑚𝑖𝑛
&!∈6

				<|𝐴𝑥0 − 𝑦0|<-
- + 𝜆∑ (𝑥0)7 E<𝑦0 − 𝑎7<E

-

-/
78, ,                                                            (3) 

where (𝑥0)7 indicates the j-th entry of 𝑥0. We contrast the optimization problem in (2) with (3). 
We note that the second term in (3) is a proximity regularization that promotes representation of 
𝑦0 using nearby atoms i.e., for suitably set regularization, if 𝑦0 is relatively far from 𝑎7, (𝑥0)7 will 
be relatively small. We note that the set 𝑆 is a convex set and the objective of the optimization 
program in (3) is also convex. This implies that (3) is a convex optimization program, for which 
efficient algorithms exist to obtain the optimal sparse representations. In this paper, we use the 
algorithm in (Tasissa et al., 2023) which is based on algorithm unrolling (Monga et al., 2021). In 
our framework, it is assumed that the dictionary 𝐴 is fixed. With that, the sparse representations 
𝑥,, 𝑥-, … , 𝑥.	 can be computed independently.  
Proposed Classification Algorithm 
We assume that there are 𝑛 training data points that belong to 𝑘 distinct different classes. The 
image classification problem is to identify the class an unlabeled testing image belongs to. Here 
on 𝑌 = [𝑦,, 𝑦-, … 𝑦.]  denotes the matrix of the training data. The test data is denoted by 𝑦_𝑡𝑒𝑠𝑡. 
In (Wright et al., 2008), a sparse coding approach for classification was proposed. The first step 
of the algorithm is to do sparse coding for each data point as follows: 

𝑚𝑖𝑛		<|𝑥0|<, 	𝑠𝑢𝑏𝑗𝑒𝑐𝑡	𝑡𝑜	<|𝐴𝑥0 − 𝑦0|<- ≤ 𝜖                                                    (3)                                                                                                                                                     

where 𝜖 models the level of noise in the image 𝑦0. In (Wright et al., 2008), the dictionary 𝐴 is 
assumed to be the training data matrix 𝑌. To identify to which of the 𝑘 classes a test data point 
belongs to, the work in (Wright et al., 2008) makes use of the following characteristic function. 
For each class 𝑖, define 𝛿0: 𝑅/ → 𝑅/ as the function that selects the entries corresponding to 
class 𝑖. Formally, given a vector 𝑥 ∈ ℛ𝓂 , [𝛿0(𝑥)]7 =	𝑥7 if 𝑦7 is in class 𝑖 and 0 otherwise. With 
that, a test data point is classified as follows:    

                                𝑎𝑟𝑔𝑚𝑖𝑛
0∈[,,-,…,<]

					<|𝐴𝛿0(𝑥>?@>) − 𝑦>?@>|<-                                                                  (4) 

For our proposed method, to design an efficient sparse coding framework, the dictionary is not 
set to be all the training data points. Rather, it is based on 𝑚-centroids obtained from the K-
means algorithm (Arthur et al., 2007, Lloyd, 1982). Given that, the atoms of dictionary are not 
directly associated to any training data. Therefore, we use cosine similarity metric, defined in 
(1), between the sparse representations of training and testing data to do classification. We 
compute the average cosine similarity between a testing data point and the training data points 
in a given class 𝑖 as follows: 

𝑠𝑖𝑚ABC,0 =
1
𝑛0

Z 𝑠𝑖𝑚[𝑥7 , 𝑥>?@>\
)# ∈ class 0

, 

where 𝑛0 is the number of training data points in class 𝑖. The testing data point is assigned to the 
class with the highest average cosine similarity: 

identity(𝑦>?@>) = 𝑎𝑟𝑔𝑚𝑎𝑥0∈{,,-,…,<}	𝑠𝑖𝑚ABC,0 . 
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If training and testing data points in the same class are generated by the same set of dictionary 
atoms with similar sparse codes, then the cosine similarity between the testing data points and 
these training data points should be high and close to 1. On the other hand, if the set of 
dictionary atoms used by training and testing data points in different classes use different sets of 
dictionary atoms, then the corresponding cosine similarity should be low and close to 0. In this 
way, we get a reliable label assignment for the testing data. We note that computing and 
comparing all the relevant cosine similarities with our local sparse codes can be done efficiently.  
Results 
In this section, we apply our proposed classification algorithm for plant disease identification 
using the PlantVillage dataset (Hughes et al., 2015, Mohanty et al., 2016), which consists of 
54,305 images of crop leaves. This dataset includes 14 crop species and 38 classes of healthy 
or infected leaves. For our experiments, we use only the apple leaves, categorized into four 
classes: leaves with apple scab, leaves with black rot, leaves with cedar-apple rust, and healthy 
leaves. There are over 3,000 data points across these four classes, with the number of images 
per class ranging from 275 to 1,645.  
The original data consists of 256-by-256 pixels RGB images. We use two methods to process 
the data for input into our algorithm. The first method is converting the RGB images to grayscale 
images and downsampling them to 15-by-15 pixels. The second method uses transfer learning 
(Zhuang et al., 2020). In this approach, we input the RGB images to the VGG16 network 
(Simonyan et al., 2015) and use the last fully connected layer with 4096 channels as the 
features of the images. The network is pretrained by ImageNet (Deng et al., 2009).  
For both data pre-processing methods, we compare our algorithm with two baseline algorithms. 
Our algorithm uses the input data and applies local sparse coding to generate the sparse 
representations. In the end, it employs cosine similarity to classify the images. The first baseline 
algorithm classifies the images directly using cosine similarity on the input data. The second 
baseline algorithm first applies K-means clustering with the number of clusters equal to the 
number of classes. The sparse code for the data is based on the cluster that each data point 
gets. For example, if the data point 𝑖 is assigned to the second cluster, then the sparse 
representation of it is a sparse vector where the only non-zero entry is a 1 in the second entry. 
With the sparse representation obtained in this manner, cosine similarity is again used for 
classification. In each experiment, half of the data is randomly chosen for training, while the 
remaining half is used for testing. We repeat the experiment five times and report the average 
results. The code to reproduce our numerical experiments can be found at this link.  
Table 1: Average classification accuracy and standard deviation of 3 algorithms. For local 
sparse coding, the number of dictionary atoms is set to be 400. Methods with the highest 
average accuracy are in bold.  

Methods Direct Downsampling VGG16 features 

Local Sparse Coding 𝟎. 𝟓𝟕𝟐 ± 𝟎. 𝟎𝟏𝟏 𝟎. 𝟖𝟕𝟔 ± 𝟎. 𝟎𝟏𝟑 
Raw Data 0.295 ± 0.018 0.744 ± 0.008 

K-means Sparse Coding 0.256 ± 0.056 0.862 ± 0.015 

Results are summarized in Table 1. When downsampling is used to process the data, local 
sparse coding obtains a 57.2% accuracy, significantly outperforming the baseline algorithm on 
the same data. When VGG16 features are used as the input, accuracy increases for all three 
methods. However, local sparse coding still outperforms the two baseline algorithms with an 
accuracy of 87.6%.  
Conclusion or Summary 
In this paper, we explored the application of local sparse coding for plant disease identification. 
Our proposed method efficiently obtains sparse features from input data, and classification is 

https://github.com/TigeeerL/Local-Sparse-Coding-Leaf-Disease-Identification
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subsequently performed using average cosine similarity. Preliminary experiments on the 
PlantVillage dataset show the method yields competitive results. Future work will test the 
proposed method on extensive datasets.  
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