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Abstract.  
For irrigated corn fields, how to optimize nitrogen (N) and irrigation simultaneously is a great 
challenge. A promising strategy is to use remote sensing to diagnose corn N and water status 
during the growing season, which can then be used to guide in-season variable rate N application 
and irrigation management. The objective of this study was to evaluate the effectiveness of UAV 
multispectral and thermal remote sensing in simultaneous diagnosis of corn N and water status. 
Two field experiments were conducted in Becker and Westport, Minnesota in 2021, 2022 and 
2023 using a split plot design with four replications, involving four irrigation treatments (100% FI 
(full irrigation), 75% FI, 50% FI, and 0% FI (rainfed)) for 2021 and 2022, and FI (125%), 100% FI, 
65% FI, and rainfed (0% FI) for 2023 as main plots and six N rate treatments (0, 78, 157, 235, 
314, and 392 kg ha-1) as subplots. Soil moisture data from four different depths were collected 
once a week in each field. A UAV (unmanned aerial vehicle) remote sensing system with 
MicaSense Altum camera was used to simultaneously collect multispectral and thermal images 
at different growth stages across the growing season. Plant samples were collected at V8, R1 
and R6 to analyze aboveground biomass, plant N concentration and plant N uptake and N 
nutrition index (NNI) was calculated as a reliable indicator of crop N status. With UAV image data, 
different vegetation indices were calculated and related to crop N status indicators and soil 
moisture conditions to identify the indices sensitive to corn N and water status. Machine learning 
models were developed using remote sensing data, weather, and management information to 
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predict corn N and water status. Using agronomic data collected from these experiments, field 
plots were labelled as “Water Stress”, “Nitrogen Stress”, ” No Stress” or “Water and Nitrogen 
Stress”. Analysis indicated that the combination of the Crop Water Stress Index (CWSI) and 
Reference Evapotranspiration (ET₀) contributed the most to detecting water stress. For nitrogen 
stress, the combination of the Normalized Difference Red Edge (NDRE) and the Normalized 
Difference Vegetation Index (NDVI) proved effective. For no stress and combined water-nitrogen 
stress, the optimal combinations were NDRE with CWSI and ET₀ with NDRE, respectively. The 
best model (XGBoost) achieved an accuracy, recall, and F1-score of 0.61-0.62. 
 
Keywords.   
Nitrogen status, Water stress, Multispectral remote sensing, Thermal remote sensing, Precision 
nitrogen management, Precision irrigation.  

Introduction 
 
The world population has been projected to around 8.5 billion in 2030 and 9.7 billion in 
2050(United Nation., 2022). As a result, producing 70 percent more food is mandatory to attain 
food security (FAO, 2009). However, this increase should be accompanied by sustainable 
enhancement and efficient management of natural resources to meet the UN's Sustainable 
Development Goals (SDGs) (Kroll et al., 2019). This boost in production generally carries an 
environmental cost and ecosystem disservices, including biodiversity loss, sedimentation of 
waterways, nutrient pollution, and greenhouse gas emissions.  (Dale & Polasky, 2007; Zhang et 
al., 2007) 
To direct agriculture towards a sustainable pathway, there is a strong demand for using precision 
agriculture in general and variable rate application technology in particular, which allows 
monitoring of the food supply chain and manage both the quantity and quality of agricultural inputs 
and outputs, applying the proper treatment in the right place at the right time (Barrett, 2010), 
optimizing the use of available resources to increase the profitability and sustainability of 
agricultural operations and reduce environmental cost of the management practices (Gebbers & 
Adamchuk, 2010). 
Vegetation indices are a very straightforward but robust method to extract the green plant quantity 
signal and information from complex canopy spectra. Thus, they provide a guide to understanding 
spatial-temporal variations of crop nitrogen (N) status, allowing the adaptation of N application to 
crop N requirements (Quemada et al., 2014). Before attaining full canopy cover, soil background 
effect on reflectance is more visible, making it difficult to distinguish between soil and plant 
spectral components. Separating components at early growth stages is crucial, as the N 
prescription plan is made at early stages (Basso et al., 2009)).on the path to minimize this 
problem, Canopy  Chlorophyll Content Index (CCCI) was developed, which can adapt to mixed 
soil/plant pixel by plotting chlorophyll index and biomass related index in a two-dimensional space 
(Clarke et al., 2001). In addition, water stress reduces the ability of VI to estimate plant traits 
(Kusnierek & Korsaeth, 2015; Schepers et al., 1996) 
Foliar temperature is inversely influenced by the transpiration. Leaf temperature has long been 
used as proxy for water stress (Tanner, 1963). The leaf and air temperature difference has been 
widely used to detect plant water stress (Idso et al., 1977). However, to overcome the limitations 
of other environmental factors influencing plant water, the Crop Water Stress Index (CWSI) was 
developed (Idso, 1982). 
The aim of the study was to investigate the potential of using machine learning classification with 
vegetation indices derived from UAV images with soil and weather variables to separate crop N 
and water stress. 
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Material and Methods 
Study Design 
The study was carried out over three years (2021-2023) in Becker and Westport, MN and 
employed a split-plot design (Figure 1). The main plots consisted of four irrigation treatments: full 
irrigation (FI: 100%), 75% FI, 50% FI, and rainfed (0% FI) for 2021 and 2022, and FI (125%), 
100% FI, 65% FI, and rainfed (0% FI) for 2023. These treatments were coded as I1, I2, I3, and 
I4, respectively. Subplots included six N rate treatments: 0, 78, 157, 235, 314, and 392 kg/ha. 
These treatments were coded as N1, N2, N3, N4, N5 and N6, respectively. Each treatment 
combination was replicated four times across the two fields to assess the N and water status of 
the corn crops.   

 
Figure 1:Experimental field locations in the state of Minnesota and plot layouts in (a) Westport and (b) Becker. 

Plant sampling data were collected from entire length of two middle rows in each plot for V8, R1 
and R6. The information on management practices and sensing date is summarized in table 1 
 
 

a) 

b) 
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Table 1 : Information on the details of the experiments conducted in 2021, 2022 and 2023 

Year Location Growth 
Stage 

Planting 
date 

Side-
dress 

date 

Harvest 
date 

Sampling  

Date 

Sensing Date 

 

 

2021 

Westport V8  

May 18 

 

June 28 

 

Nov 3 

June 29 Aug 6 

Aug 25 R1 July 29 

R6 Oct 5 

Becker V8  

May 7 

 

June 25 

 

Oct 22 

June 25 

July 23 

Sep 27 

Aug 16 

Aug 25 

Aug 31 

R1 

R6 

 

 

2022 

Westport V8  

June 23 

 

July 6 

 

Nov 18 

July 6 Aug 10 

Aug 31 

Sep 12 

R1 Aug 3 

R6 Sep 5 

Becker V8  

May 16 

 

June 28 

 

Sep 31 

June 28 

July 27 

Sep 6 

July13 - July 27 

Aug 10 - Aug 23 

Aug 31 – Sep 27 

R1 

R6 

 

 

2023 

Westport V8  

May 11 

 

June 22 

 

Oct 17 

June 22 June 22 – July 7 

July 12 -   Aug 29 R1 July 31 

R6 Sep 28 

Becker V8  

May 4 

 

June 15 

 

Oct 22 

June 23 

July 19 

Sep 7 

June 20 - July 6  

July 13 - July 25 

Aug 8 - Aug 29 

R1 

R6 

 
Crop N Status Diagnosis 
 
Six samples from rows 4-5 of whole plant per plot were collected three times at V8, R1 and R6 
stages in each year. The first sampling coincided with the side-dress application. Two types of 
samples were taken: aerial biomass and total plant N from six plants. 
To determine corn N status, the N nutrition index (NNI) was calculate by using critical dilution 
curve for corn proposed by (Plénet & Lemaire, 1999), linking corn N dilution with dry matter and 
leaf area expansion. It can be calculated using the following equation: 

𝑁𝑁𝐼 = %"!
%""

      (1) 

Where %𝑁# = 	3.6	 × 𝑏𝑖𝑜𝑚𝑎𝑠𝑠$%.'(  is the minimum N concentration needed to produce the 
maximum growth. Nevertheless, the NNI is not a real-time assessment method. It necessitates 
destructive sampling, subsequent quantification of plant N concentration, and measurement of 
aerial biomass. Despite its accuracy, this process is labor-intensive and time-consuming, 
rendering it impractical for real-time field applications and large-scale agricultural operations(Cao 
et al., 2012; Li et al., 2022; Miao et al., 2009; Peng et al., 2010; Prost & Jeuffroy, 2007). 
Additionally, under water stress conditions, the thresholds of the NNI that delineate under-
fertilization and over-fertilization lose their validity. This is due to the varying degrees of stress 
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impacting the plant's physiological responses, altering the accuracy of NNI thresholds.(Gonzalez-
Dugo et al., 2010). 
Spectral and thermal measurements 
The Canopy Chlorophyll Content Index (CCCI) is a widely recognized planar domain index. It 
utilizes structural vegetation indices (VI) as proxies for crop biomass, and chlorophyll related VI 
for crop N concentration, as outlined by Barnes et al.(2000) and Fitzgerald et al.( 2010). In this 
study, CCCI for each plot was calculated using a two-dimensional framework where NDVI values 
were plotted on the X-axis and NDRE on the Y-axis. The proximity of each data point to the top 
and bottom lines, which represent the range of data starting from the coordinate origin, determines 
the CCCI value. Plots with adequate N tend to align closer to the upper line, whereas N-deficient 
plots are nearer to the lower line. As N status considered as secondary variable, which cannot be 
directly related to remotely sensed observations (Weiss et al., 2020), the most VIs developed use 
other biophysical variables as chlorophyll content or biomass without taking in consideration other 
limiting factors that may influence the N dilution curve(Mistele & Schmidhalter, 2008). 
Furthermore, the optimal N content is dependent on biomass, which can be significantly affected 
by drought conditions (Lemaire et al., 2008; Pancorbo et al., 2021; Sadras & Lemaire, 2014), 
making the estimation of crop traits through vegetation indices inefficient when crops are suffering 
from water stress. 
Under field conditions, crops have varying N fertilization requirements due to differences in soil 
conditions, landscape conditions, and water stress levels (Ma et al., 2015). To address this issue, 
incorporating a water stress indicator appears essential for gaining more accurate insights into N 
requirements. 
 
Crop water stress detection  
Thermal infrared imaging is a highly effective method for assessing water status and optimizing 
irrigation. the study incorporated temperature-based vegetation indices like the canopy-air 
temperature difference (𝑇! − 𝑇") (Idso et al., 1977), and CWSI (Idso, 1982; Jackson et al., 1977). 
CWSI can be calculated by using (Eq. 2): 
 

𝐶𝑊𝑆𝐼! =
(#!$#")$(#!$#")##
(#!$#")$#$(#!$#")##

                                                                                                       (2) 

Where (𝑇𝑐 − 𝑇𝑎)##  is the lower threshold indicating a well-watered condition; (𝑇𝑐 − 𝑇𝑎)$#  is the 
upper limit representing the stressed condition. The two CWSI models differ in the methods used 
to calculate the upper and lower limits. 

The Theoretical CWSI (𝐶𝑊𝑆𝐼%) is using the energy balance equation and the  Penman–Monteith 
equation (Jackson et al., 1981). Where (𝑇𝑐 − 𝑇𝑎)$# and (𝑇𝑐 − 𝑇𝑎)## can be calculated by: 
 

(𝑇' − 𝑇())* =
+"(,%$-)

.'&
                                                                                                                     (3) 

(𝑇' − 𝑇()** =
+"(,%$-)

.'&
	× 	 /

/0∆
− 234

/0∆
																																																																																												(4)	

where 𝑟(  represents the aerodynamic resistance (s/m), 𝑅5  denotes the net solar radiation 
(W/m²), 𝐺  is the soil heat flux (W/m²), 𝑐.signifies the heat capacity of air (J/(kg·K)), 𝛾 is the 
psychrometric constant (Pa/K), ∆ is the slope of the saturated vapor pressure curve relative to 
temperature (Pa/K), and VPD refers to the vapor pressure deficit (Pa). 
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The empirical CWSI (𝐶𝑊𝑆𝐼& ) was first presented by (Idso, 1982), where a 𝑇! − 𝑇"  of a well-
watered crops follows a linear relationship with VPD, following this principle (𝑇' − 𝑇()** can be 
calculated as is in Eq. 5: 

(𝑇! − 𝑇")## = 𝑎	 × 𝑉𝑃𝐷 + 𝑏                                                                                                          (5) 
Using data from three years and 982 observations, the coefficient and intercept were determined 
as follows: a = -1.30 and b = 3.60. 

Considering (𝑇' − 𝑇())* , it can be calculated by (Eq. 6) where 𝑇'  is from a stressed 
crop.(Katimbo et al., 2022): 

(𝑇! − 𝑇")## = max	(𝑇! − 𝑇")                                                                                                          (6) 
To ensure the accuracy and consistency of the Crop Water Stress Index (CWSI) in our model, we 
normalized the empirical CWSI (CWSI_E) using a min-max scaler(Patro & Sahu, 2015). This 
normalization process scales the CWSI_E values to a range between 0 and 1, making them 
comparable and reducing the potential influence of outliers. 

𝐶𝑊𝑆𝐼56+7(8!9:; =
<=>?'$@AB	(<=>?')

@DE	(<=>?')$@AB	(<=>?')
	                                                                  (7) 

 
Development and Evaluation of the Machine learning model : 
Expert knowledge and agronomic data were utilized to label the plots based on stress categories: 
N Stress, Water Stress, Water and N Stress, and No Stress. This classification follows the criterion 
that more than a ten percent reduction in relative yield is considered a deficiency zone for both 
water and N consumption.(Fowler, 2003; Heins & Yelanich, 2013; Isaac & Kimaro, 2011; Memon 
et al., 2005). 
 

 
Figure 2: NNI relationship with relative yield 

In our study, we identified an imbalance in the stress category data, with certain categories being 
underrepresented. This imbalance could significantly impact the performance and accuracy of our 
machine learning models. 
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Figure 3: Stress Category distribution. 

To address this issue, we employed the Synthetic Minority Over-sampling Technique (SMOTE) 
to balance the dataset(Chawla et al., 2002). SMOTE generated synthetic samples for the 
underrepresented categories, ensuring each stress category was adequately represented. This 
step was crucial to avoid biased predictions and to enhance the reliability and robustness of our 
machine learning models. 
 
Our research was primarily focused on the V8 growth stage of corn. This stage is critical for 
early season stress condition identification, which is necessary for prompt and informed 
decisions about irrigation schedules and side-dress N applications. By concentrating on V8, we 
can precisely detect water stress as well as N stress, enabling us to make improvements to 
management procedures. This strategy supports sustainable agriculture practices by enhancing 
crop health, optimizing resource use, and increasing yield potential. 
We used the machine learning algorithm XGBoost (Chen & Guestrin, 2016) to categorize the 
stress conditions using cross validation (Browne, 2000). Furthermore, we used explainable 
artificial intelligence (XAI) with SHAP (SHapley Additive exPlanations)(Lundberg & Lee, 2017), 
which gave us insights into the role of each feature in the model. Robust and transparent stress 
detection was guaranteed by this mix of advanced classification and interpretability algorithms, 
which will help with accurate and efficient in-season management decisions. 

Results  
This combination of advanced classification and interpretability techniques ensured robust and 
transparent stress detection, aiding in precise and effective in-season management decisions. 

Cross-validation was used to assess the model's performance, yielding the following metrics. 

Table 2: Performance Metrics of the XGBoost Model for Different Stress Conditions 

Stress Condition precision recall f1-score 
Nitrogen Stress 0.59 0.57 0.58 

No Stress 0.59 0.57 0.58 

Water Stress 0.56 0.46 0.51 

Water and Nitrogen Stress 0.7 0.88 0.78 

accuracy 0.62 0.62 0.62 

macro avg 0.61 0.62 0.61 

weighted avg 0.61 0.62 0.61 
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The results indicate that the model achieved a cross-validation accuracy of 0.62, with varying 
performance across different stress conditions. Notably, the model performed best in detecting 
combined water and N  stress, achieving a precision of 0.70, recall of 0.88, and an F1-score of 
0.78. However, it is important to note that the high performance in this category may be due to 
overfitting, because of applying the SMOTE to balance the dataset. The use of SHAP provided 
valuable insights into the feature contributions, enhancing the interpretability of the model's 
predictions. 
The confusion matrix below further illustrates the model's performance, showing the distribution 
of predicted versus actual stress conditions: 

 
Figure 4: Confusion Matrix with percentages 

To further illustrate the contribution of features to the predictions for various stress conditions, 
unique SHAP force charts were created. These charts illustrate the influence of each attribute on 
the likelihood that the model will forecast a particular stress condition: 
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The SHAP force plots offer an in-depth comprehension of the ways in which various variables 
influence the stress conditions that are predicted. The arrows show the direction and amount of 
each feature's contribution, and the x-axis shows the model's likelihood of predicting a certain 
stress situation. 
 

• Nitrogen Stress: Tc_Ta, CWSI_T, and ET₀ are the primary contributors (highlighted in 
red) that raise the likelihood of N stress. On the other hand, the blue-highlighted NDVI and 
NDRE reduce the likelihood of N stress. 

• Water Stress: The chance of water stress is considerably increased by features like 
CWSI_T and ET₀, which are indicated in red. Conversely, the probability of water stress 
is reduced by solar radiation and NDRE, which are indicated in blue. 

• No Stress: The red features that raise the likelihood of no stress are accumulated GDD, 
ET₀, and NDRE. The chance of there being no stress is decreased by blue characteristics 
like (𝑇𝑐 − 𝑇𝑎) and CWSI_normalized. 

• Water and N Stress: The probability of both water and N stress combined is increased 
by solar radiation and CWSI_normalized, which are indicated in red. On the other hand, 
the blue-highlighted ET₀, CWSI_T, Tc_Ta, and NDVI reduce the likelihood of this 
combined stress situation. 
 

Developing a threshold using CWSI to start irrigation is crucial for effective water management. 
The following figure focuses on the impact of the normalized CWSI (CWSI_normalized) on water 
stress prediction: 
 
 
 
 

Nitrogen Stress 

Water Stress 

No Stress 

Water & Nitrogen Stress 

Figure 5: SHAP Force Plots for different stress conditions 



Proceedings of the 16th International Conference on Precision Agriculture 
21-24 July, 2024, Manhattan, Kansas, United States  

10 

 
 
In this combined SHAP force plot, the x-axis represents the model's ability to predicting water 
stress, with higher values (red) indicating increased likelihood of water stress and lower values 
(blue) corresponding to no water stress. The illustration above emphasizes how important 
CWSI_normalized is in identifying the circumstances behind water stress. The best time to start 
irrigation can be found by setting a threshold for CWSI_normalized, which will increase crop 
health and water use efficiency. 
Similarly, to develop a threshold using CCCI to detect N stress, the following figure focuses on 
the impact of the CCCI index on N stress prediction: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Threshold 

No Water Stress  Water Stress 

Figure 6: Combined SHAP CWSI Force Plot for water stress 

Threshold 

No Nitrogen 
Stress 

 Nitrogen Stress 

Figure 7:Combined SHAP CCCI Force Plot for N stress 
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Discussion and Conclusion 
 
The ability of UAV multispectral and thermal remote sensing to identify water stress and N 
deficiency in corn throughout the growing season was effectively illustrated by this study. Using 
machine learning models, specifically XGBoost, and the interpretability of SHAP, we achieved a 
remarkable degree of accuracy and transparency in the classification of different stress 
conditions. The integration of these cutting-edge methods enabled solid and accurate in-season 
management choices, which are essential for optimal resource utilization in precision farming. 
 
To correctly identify and address corn N and water stress, the study emphasizes the need of 
combining multispectral and thermal remote sensing data with cutting-edge machine learning 
algorithms. We can optimize N fertilization and irrigation techniques by determining thresholds 
for important indices like CWSI_normalized and NDRE and by comprehensively considering the 
contributions of specific features. 
 
The findings also highlight the necessity of connecting stress detection to practical management 
techniques. This entails figuring out the best time and quantity for fertilizer and watering in 
addition to detecting the kind of stress. Precise suggestions will be made possible by integrating 
CWSI with data on water balance (WB) and evapotranspiration, as well as connecting NDRE 
with rates of N application. This will guarantee effective resource utilization and sustainable 
farming practices. 
 
In conclusion, explainable AI, machine learning, and UAV-based remote sensing offer a potent 
tool for precision agriculture. This strategy improves our capacity to dynamically monitor and 
control crop health, which eventually raises the possibility of increasing yield and resource 
efficiency. Further studies should concentrate on enhancing these models and investigating 
their use in diverse crop systems and environments in order to improve their potential for use in 
precision agriculture. 
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