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Abstract.  
Rainfed agricultural systems are dependent on weather, particularly precipitation. Understanding 
the spatio-temporal variability of on-farm yield productivity is crucial for agronomic decision-
making. This study develops a data pipeline to assess crop yield variability within a field in 
response to precipitation, utilizing historical yield monitor data farm and daily precipitation records 
from the CHIRPS dataset. A farm located in Illinois, containing nine years of maize and seven 
years of soybean yield monitor data, is used as case study. Daily precipitation data was used to 
calculate synthetic variables representing cumulative precipitation over different periods. 
Generalized Additive Models (GAMs) were employed to identify spatially varying yield responses 
to cumulative precipitation. This was followed by a Classification and Regression Tree (CART) 
analysis to categorize these responses varying response within the field. The study revealed that: 
(i) the optimal precipitation period for explaining yield variation differs across fields and crops; (ii) 
certain field areas showed more yield variation related to precipitation; and (iii) similarly high-yield 
variation areas can react differently to the same precipitation levels. These findings underscore 
the potential of integrating spatial data science with field-level data to refine management 
practices in precision agriculture.  
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1. Introduction 

Rainfed agriculture is the dominant farming method globally. Crop yields in rainfed systems 

are often 50% below their potential due to varying water availability, influenced by environmental, 

soil, and climatic factors. Inter-annual climate variability significantly contributes to yield variability, 

with 31-43% of soybean and maize yield fluctuations linked to changes in temperature and 

precipitation during the growing season (Lobell et al., 2009; Wani et al., 2009). 

Despite extensive research on the impacts of climate variability on regional crop yields, there 

is a noticeable lack of detailed studies on intra-field yield responses to precipitation. This 

knowledge gap is significant for optimizing variable rate management practices within fields. The 

adoption of Geographic Information Systems (GIS) and yield monitor data has fostered interest 

in site-specific management, allowing for the adjustment of inputs like fertilizers and water to 

match the varying conditions within a field. Such practices not only cater to the unique 

characteristics of each field section but also enhance resource efficiency and productivity. 

However, more detailed research is needed to better understand how specific field conditions, 

such as soil moisture and topography, affect yield responses to precipitation and to tailor 

management practices accordingly. This is crucial for advancing precision agriculture and 

maximizing the potential of rainfed crops (Basso et al., 2010, 2009; Bullock et al., 2002; Fu et al., 

2014; Krause et al., 2020; Moore and Tyndale-Biscoe, 1999; Mourtzinis et al., 2017; Plant, 2001; 

Teasdale and Cavigelli, 2017; Xu et al., 2022). 

Following this rationale, this study aims to develop a data pipeline to quantify the spatio-

temporal yield variation within a field in response to precipitation, using many years of yield-

precipitation records. 

2. Materials and Methods 
2.1. Data 

One farm in the United States served as case study to evaluate the data pipeline. The Farm, 

located in Illinois, covers 20 hectares and provided nine years of maize (Case study 1) and seven 

years of soybean (case study 2) yield monitor data. The yield monitor data were cleaned using 
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an outlier detection method followed by the local Moran procedure (Córdoba, 2014). Then, the 

data were interpolated using inverse distance weighting interpolation  (Gräler et al., 2016) to 

create a 6x6 m grid, enabling the overlay of yield monitor data across years. 

Daily precipitation data of the farm was gathered form CHIRPS dataset (Funk et al., 2015, 

2014), and used to calculate synthetic variables representing cumulative precipitation over 

different periods. Since planting date was not available, these periods start from the beginning of 

the historical planting date (April 20th for soybean) (Baum et al., 2019; Deines et al., 2023; 

Mourtzinis et al., 2017), and range from 10 to 200 days later, in 10-day increments. 

2.2. Models 

The analysis of on-farm yield variation in response to cumulative precipitation was conducted 

using Generalized Additive Models (GAMs) for each crop (Wood, 2017). In this framework, the 

first level of the model (data layer) describes the crop yield (𝑌!) for the 𝑖"#   observation. The crop 

yield (𝑌!) was assumed to follow a normal distribution with expected value 𝜇! and variance 	𝜎$: 

𝑌! 	~𝑁𝑜𝑟𝑚𝑎𝑙(𝜇! , 𝜎$)                       (1) 

In the second level of the model, 𝜇! was defined as: 

𝜇! =	𝛽% + 𝑓(𝐿𝑜𝑛! , 𝐿𝑎𝑡! , 𝐶𝑃!),          (2) 

where 𝛽% is the intercept; and 𝑓(𝐿𝑜𝑛! , 𝐿𝑎𝑡! , 𝐶𝑃!) is a tensor product smooth function of latitude (𝑋!), 

longitude (𝑌!), and cumulative precipitation (𝐶𝑃!) with basis functions thin plate spline for the 

spatial coordinates (Wood, 2003) and cubic regression spline for cumulative precipitation variable. 

The GAMs were applied using the mgcv package in R, with model selection guided by the 

Akaike Information Criterion (AIC) to identify the best cumulative precipitation period for explaining 

yield variation. Model performance was assessed using metrics such as Relative Root Mean 

Square Error (RRMSE), Kling-Gupta Efficiency (KGE), and percentages of Lack of Precision 

(PLP) and Accuracy (PLA) from the Metrica package (Correndo et al., 2022). 

Spatial variations in yield responses were derived from the GAM, determining the maximum 
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yield at each coordinate through the first derivative of the yield with respect to cumulative 

precipitation. This maximum is found where the derivative equals zero, or nearest to zero when a 

true maximum isn't achieved. In cases of a constant yield response, the lowest cumulative 

precipitation extreme is used. The specific cumulative precipitation that optimizes yield was also 

pinpointed. Growth rates from the onset to the peak yield and decline rates post-peak were 

computed. If peak yield is unattainable, a zero rate is recorded, and the data includes a marker 

indicating that peak yield was not reached due to precipitation levels at that location. 

A Classification and Regression Tree (CART) approach was utilized to differentiate 

responses to cumulative precipitation across the field (Breiman, 1998). This technique, 

categorizes observations into increasingly similar groups based on their characteristics. The 

cumulative precipitation that maximizes yield served as response variable, while other spatial 

parameters derived from the GAM analysis—such as Maximum Yield, Growth Rate, Decay Rate, 

and whether the maximum yield was achieved—acted as predictors. Additionally, CART 

configurations were adjusted to only perform splits that accounted for at least 10% of the variation 

in the data, ensuring significant segmentation. 

3. Results 
3.1. Model evaluation 

Based on AIC, the optimum cumulative precipitation period for explaining yield variation 

changed across case studies. For Maize (case study 1), the optimum period spanned 100 days 

starting from May 1st. In the soybean case study (case study 2), the optimum period was 90 days 

beginning on April 20th. In general, the models using the optimal cumulative precipitation periods 

demonstrated a strong performance (KGE = 0.66-0.91, RRMSE = 11-17%). 
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Figure 1. Model evaluation across maize (left panel) and soybean (right panel) case studies. Points 

represent yield in each cell within the field in a specific year. 

3.2. Spatially varying response parameters 

Figure 2 shows the ranges and spatial distribution of response parameters across maize and 

soybean case studies. In both case studies, a small fraction of the total field area did not achieve 

maximum yield within the specified cumulative precipitation range—specifically, 0.7% in maize 

(case study 1) and 0.1% in soybean (case study 2). The maize case study exhibited the highest 

variability in maximum achievable yield, with a coefficient of variation (CV) of 10%, compared to 

the soybean case study, which had a CV of 6%. 

The spatial distribution of cumulative precipitation that maximizes yield does not consistently 

align with the observed patterns of maximum yield throughout the field. This divergence is due to 

the fact that identical maximum yield levels can be reached under varying precipitation conditions. 
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Figure 2. Maps of the spatially varying response parameters across Maize (left panels) and Soybean (right 

panels) case studies. Rows represent each spatially varying parameter. In all parameters, darker the color, 

higher the parameter’s value. CP: cumulative precipitation. 

3.3. Classify type of yield response to cumulative precipitation 

The CART analysis revealed groups with varying type of responses to cumulative 

precipitation across both case studies. Maize case study obtained four groups and groups were 

categorized based on the decay rate, while soybean case study obtained three groups and groups 
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were categorized based on the growth rate. In maize case study, group 4 requires the most 

cumulative precipitation to maximize yield, compared to groups 1, 2, and 3. Group 1 has the 

highest decay rate, leading to substantial yield reductions when precipitation exceeds the optimal 

range. The decay rates for groups 2 and 3 are 30–37 kg ha-1 mm-1 and 17–25 kg ha-1 mm-1, 

respectively, while group 4 has the lowest at 4–10 kg ha-1 mm-1. In soybean case study, Group 4 

required the most cumulative precipitation to achieve maximum yield, whereas groups 1, 2, and 

3 required less. Group 1, needing the least precipitation, achieved the highest yield and growth 

rate. In contrast, Group 4, with the highest precipitation requirement, had lower yields and growth 

rates (Figure 3).  
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Figure 3. Maps illustrating spatial distribution of groups with varying yield response to cumulative 

precipitation within the field in each case study. Below each map, curves of response of yield to cumulative 

precipitation in each group. Top panels represent maize case study. Bottom panels represent soybean 

case study. Each color represents a group. Solid black line corresponds to the mean yield. Dashed black 

lines correspond to the 95% confidence intervals. 
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4. Conclusion 

This research highlights the importance for farmers of recognizing spatial and temporal 

fluctuations in yield due to varying cumulative precipitation. Key findings from this study reveal: 

(i) the optimal precipitation period for explaining yield variation differs across fields and crops; (ii) 

certain field areas showed more yield variation related to precipitation; and (iii) similarly high-yield 

variation areas can react differently to the same precipitation levels. Further research should 

leverage high-resolution remote sensing to expand upon these findings and apply the established 

data framework to conduct field sampling and variable rate on-farm experiments. 
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