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Abstract. Aflatoxin is a toxic carcinogenic compound produced by certain species of 
Aspergillus fungi, which has a significant impact on peanut production. Aflatoxin levels 
above a certain threshold (20 ppb in the USA and 4 ppb in Europe) make peanuts 
unsuitable for export, resulting in significant financial losses for farmers and traders. 
Unmanned Aerial Vehicles (UAVs) are becoming increasingly popular for remote sensing 
applications in agriculture. Leveraging this advancement, UAV based thermal imaging 
can be an effective way to detect aflatoxin contamination in the field. It is a non-destructive 
method, and the ability to provide real-time, large scale field data makes thermal imaging 
an effective method for field mapping and monitoring aflatoxin contamination. This study 
aims to compare two image segmentation algorithms in the separation of soil and canopy 
pixels, and to assess the potential correlation of crop water stress with the presence of 
aflatoxins in the field. The random forest segmentation was more conservative, resulting 
in the removal of more pixels, including parts of the canopy that were sparce and likely to 
show mixed emissivity of canopy and background soil. Average canopy temperature after 
soil pixels removal was used to calculate the difference between air and canopy 
temperature and correlated with aflatoxin. The highest correlation between ∆T and 
aflatoxin levels was observed later in the season, in mid-September with a correlation 
coefficient of 0.56. Although, based on these initial results that is an indication that canopy 
temperature may be higher correlated with aflatoxin levels at later stages more data 
needs to be collected. 
Keywords.  Remote Sensing, Canopy Temperature, Aflatoxin, Peanuts.  



Proceedings of the 16th International Conference on Precision Agriculture 
21-24 July, 2024, Manhattan, Kansas, United States  

2 

Introduction 
Aflatoxin, a mycotoxin produced by Aspergillus fungi, poses significant health risks, and affects 
crop performance, particularly in peanut production (Payne & Brown, 1998). It can cause acute 
liver disease, cancer, and birth defects in humans, and various health issues in animals. Various 
environmental factors, including nutrition, water, temperature, and pH influences aflatoxin 
biosynthesis (Yu, 2012). Among these factors, water stress in peanut crops significantly increases 
the risk of aflatoxin contamination. These fungi thrive in hot, dry conditions and can produce 
aflatoxin as a defense mechanism. Additionally, water stress can weaken plant defenses, making 
them more susceptible to fungal invasion and subsequent aflatoxin production. Under water 
stress conditions, plants undergo physiological adjustments to cope with reduced water 
availability, and stomatal conductance serves as a key mechanism in this response (Carmo-Silva 
et al., 2012; Pou et al., 2003; Pou et al., 2008). As a plant sense water deficit, stomata close and 
reduces the stomatal conductance. The impact of reduced stomatal conductance extends beyond 
water conservation and influences the leaf temperature as transpiration cooling is reduced 
(Buckley, 2019). 
Recent advancements in sensing technologies, particularly the use of UAVs equipped with 
thermal cameras, offer a more efficient and precise method for monitoring crop water stress 
(Khorsandiet al., 2018). Thermal imaging can capture these temperature changes, making it an 
effective tool for identifying water-stressed areas. Therefore, using unmanned aerial vehicles 
(UAV)-based thermal imaging can be used in early detection of aflatoxin hotspot map. Hence, 
this study aims to detect the aflatoxin contamination in the field through the use of remote sensing. 
Specific objectives of this initial study are 1) to compare two image segmentation algorithms in 
the separation of soil and canopy pixels, and 2) to assess the potential correlation of crop water 
stress with the presence of aflatoxins in the field.   

Methods 

Study Site  
In 2023, three on-farm trials were carried out in rainfed peanut grower’s fields, located in Douglas, 
Coffee and Mitchell Counties. The fields were divided into 0.5 hectares grids and sampling points 
in the center of each plot were used for the ground data collection. For this preliminary study, only 
the field in Mitchell County was selected for analysis (Fig. 1). 

          
Fig. 1. Peanut grower's fields used in 2023, located in Douglas (a), Coffee (b) and Mitchell (c) counties respectively. 

Image Acquisition  
The DJI M300 RTK UAV equipped with WIRIS Pro thermal camera (Workswell Infrared Cameras 
and Systems, Prague, Czech Republic) (Fig. 2) was used to collect canopy temperature data. 
The WIRIS Pro camera has an uncooled Vox microbolometer sensor with an accuracy of ±2 oC 
and temperature sensitivity of 30mK. The camera is also equipped with an RGB sensor, which 
allows for simultaneous data collections of RGB and thermal images. Images were collected 90 
days after planting (DAP) on dates close to ground data measurements. Flight plan was created 
at the beginning of the season and same flight plan was used for the whole season. Flights were 

(b) (a) (c) 
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performed with 8 m/s speed with 85% frontal and site overlap. The spatial resolution of images 
acquired was 15.5 cm. The individual images captured by the camera was stitched using the 
Pix4D mapper software (Pix4D SA, Lausanne, Switzerland) and the resultant orthomosaic map 
was analyzed using ArcGIS Pro (ESRI Inc., Redlands, CA) and RStudio. 

 
Fig. 2. DJI M300 RTK UAV equipped with Workswell WIRIS Pro thermal camera. 

UAV Image Processing 
Both the RGB orthomosaic and thermal reflectance map obtained after stitching were loaded into 
ArcGIS Pro and Rstudio, where image segmentation was performed. Using FIELDImageR and 
FIELDimageR.EXTRA, the Green Red Vegetation Index (GRVI) (Equation 1) was calculated and 
used in two different segmentation methods; k-mean clustering and random forest. Both methods 
were applied to segment soil and canopy pixels, for soil pixel removal. The GRVI is a reliable 
measure to distinguish vegetation and soil pixels (Motohka et al., 2010) .  

                                             GRVI = !"##$%&#'
!"##$(&#'

                                                                                                    (1) 

In the k-mean clustering method, the resultant GRVI index map was processed for classification 
giving the two classes as input while with random forest, random soil and plant pixels were trained 
for the classification. The classified images were used to create a mask that was applied to the 
thermal images for soil pixel removal. 

Ground Data Collection 
To detect the presence of aflatoxin in the field, plant samples were collected in two weeks intervals 
after 90 DAP. Ten plants around the sampling point were randomly selected from each plot for 
aflatoxin analysis. Samples were separated and sent to a lab for analysis using the ELISA 
extraction method. 

Data Analysis 
To normalize the canopy temperature values, the air temperature during the time of the flight was 
averaged and the canopy temperature measured in each pixel was subtracted to calculate the 
difference between air temperature and canopy temperature (∆T). Because canopy temperature 
is extremely variable due to the weather conditions, especially air temperature, normalizing the 
canopy temperature values is needed to extract useful information about the canopy water status. 
For data analysis the temperature data of the 10-meter diameter circle around the sampling point 
was extracted from the thermal images. Spearman correlation was used to assess the relationship 
between crop water stress (represented by ∆T) and aflatoxin concentrations.  

Results 
Both the K-means clustering and random forest image classification methods achieved a 
satisfactory result on separating the vegetation and soil pixels as shown in Fig. 3. After image 
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classification the majority of soil pixels were removed using both methods. Due to the very high 
number of canopy-related pixels compared to exposed soil, the visual identification of common 
pixel and soil peaks in the histogram is of difficult visualization. However, comparing the histogram 
of the original unsegmented image with the two images after segmentation and soil pixel removal, 
it is possible to observe that the number of pixels with temperatures higher than 36˚C significantly 
decreased. To better compare the performance of both methods, a close-up image of an area of 
the field after soil pixel removal was shown in Figure 4. It can be observed that the random forest 
segmentation was more conservative, resulting in the removal of more pixels, including parts of 
the canopy that were sparce and likely to show mixed emissivity of canopy and background soil. 
Compared to the K-mean method, random forest performed a better segmentation. Pixels with 
mixed reflectance can significantly influence the efficiency to evaluate crop water stress to the 
high temperature values caused by background soil reflectance.  

 
Fig. 3. Histogram of original image and after soil pixel removal using the random forest and the K-means image 

segmentation methods. 

  

Fig. 4. A close-up image of the peanut field showing the result of both the Random Forest (a), and the K-Means (b) image 
segmentation methods overlapped with the original image. The blue pixels represent the canopy pixels after image 

segmentation. 

(a) (b) 
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After soil pixel removal, the average temperature data was used to calculate ∆T for each plot and 
correlate with aflatoxin occurrence in the field. The Spearman correlation between the ∆T and 
aflatoxin contamination in different dates are shown in Table 1. Significant correlations were 
observed on two of the three dates tested. The canopy temperature data collected 4 days prior to 
aflatoxin analysis showed a significant positive correlation with an r value of 0.48, while the 
correlation significance did not hold for data aerial data collected 8 days after aflatoxin analysis. 
The different results are likely due to the high variation in weather conditions from day to day, and 
constant changes in crop water status and therefore fluctuations in stress. In mid-September, 
later in the season, the ∆T showed the highest correlation with aflatoxin levels with a correlation 
value of 0.56.  

Table 1. Spearman correlation between ∆T and aflatoxin levels at different dates. 
Flight Date Aflatoxin Measurement Date Correlation Coefficient (r) 
August 11 August 15 0.48* 
August 23 August 15 -0.20 

September 12 September 07 0.56*  
*Significant correlations 

Conclusions 
The analysis demonstrates that the random forest model using RGB images to mask thermal 
images can be used to segment soil and vegetation pixels and enhance the segmentation 
performance for thermal images. This approach leverages the strengths of random forest 
algorithms to handle complex relationship and feature interactions leading to a better separation 
between canopy and soil pixels. Further analysis will be performed testing other segmentation 
approaches to improve separation of soil and canopy temperature pixels for peanuts. 
The correlation analysis reveals a higher correlation between the ∆T, an indicator of crop water 
stress and aflatoxin levels at a later stage of peanut crops. Although, based on these initial results 
that is an indication that canopy temperature may be higher correlated with aflatoxin levels at later 
stages more data needs to be collected. Aflatoxin data and peanut water stress is being evaluated 
in two additional fields. These initial findings are promising to show that UAV-based canopy 
temperature may be a good indicator of aflatoxin risk areas to assist growers in mitigating 
contamination. 
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