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Abstract.  
Citrus greening disease (HLB) and citrus canker are diseases afflicting Florida citrus groves, 
causing financial losses through smaller fruits, blemishes, premature fruit drop and/or eventual 
tree death. Often, symptoms of these resemble those of other defects or infections. Since HLB 
mitigation relies on prevention, early detection of HLB and canker via in-grove automated leaf 
inspection can enable more effective management of groves. Thus, vision-based in-grove 
disease scouting offers a financial benefit to the Florida citrus industry. This study tests methods 
of band selection from hyperspectral reflectance imagery (HSI) for classifying these two 
conditions in the presence of other, less consequential leaf defects. Hyperspectral reflectance 
images (400-1000 nm) of both sides of citrus leaves with visible symptoms of HLB, canker, zinc 
deficiency, scab, melanose, greasy spot, and a control class were collected with a line-scan HSI 
camera. Spectral bands from this imagery were selected using three methods: a random 
selection, Analysis of Variance (ANOVA) ranking of intensity values, and ANOVA with GLCM 
features. Using the selected bands, the YOLOv8 nano and small network architectures were 
trained to classify these images. The small network using an intensity-based band combination 
yielded an overall weighted F1 score of 0.8959, classifying HLB and canker with F1 scores of 
0.788 and 0.941, respectively. This model variation also returned higher recall of canker (0.944) 
than any other model, despite a lower recall of HLB (0.941) than any other model. Confusion 
involving the control class was the primary error mode for most models. GLCM-based band 
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selection did not improve results, and the band combination appeared to exert less influence on 
the classification performance than the network size selected. These findings suggest that 
YOLOv8 relies more heavily on intensity differences than texture properties of citrus leaves, and 
is less sensitive to the choice of wavelengths than are traditional machine vision classifiers. 
 
Keywords.  
Hyperspectral, citrus, HLB, YOLO, GLCM, texture features, inspection, leaves, band selection, 
multiclass classification.  
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Introduction 
The citrus industry contributes significantly to the economy of the state of Florida, which is 
currently the top domestic supplier for the U.S. orange juice market (Weber et al. 2024). Fruit 
production, juice production and marketing contributed approximately $6.9 billion to Florida’s 
economy over the 2020-2021 season (Cruz, Court, and Ferreira 2023). In the 2022-2023 crop 
year, Florida produced 18.1 million boxes of citrus (“2022-2023 Citrus Summary” 2023). 
Although this sum is well short of the peak production of 300 million boxes per year recorded in 
the late 1990’s, Florida supplied 28.6% of the USA’s 2022-23 citrus production. Several factors, 
including hurricane damage, urban growth, a labor shortage, and the arrival of a few pathogens 
have all beset the Florida citrus industry recently. Citrus Greening Disease (HLB), a bacterial 
infection of Candidatus Liberibacter asiaticus and transmitted by the Asian citrus psyllid, was 
first recorded in Florida in 2005 (Bové 2006). Symptoms include mottling on leaves, twig 
dieback, and premature fruit drop. Also, fruit from infected trees is often of compromised quality 
(Dewdney, Vashisth, and Diepenbrock 2023). Currently, the best defenses against HLB are 
preventative, including removal of infected trees and psyllid control (Wang et al. 2017). Placing 
citrus groves underneath mesh screens to exclude psyllids (CUPS) is also being attempted 
(Schumann et al. 2023), but the long-term feasibility of this approach is not yet known.  
Citrus canker is a bacterial infection caused by some strains of the Xanthomonas genus and 
has been present in Florida in varying levels of severity for over a century. Typically spread by 
wind and rain, this infection causes fruit drop and dieback (Gottwald, Graham, and Schubert 
2002). An infected leaf or fruit will present raised lesions with a yellow halo surrounding them. 
Copper sprays can protect fruit from infection, but since leaves grow faster, copper is much less 
effective for protecting them (Dewdney and Johnson 2023). The state of Florida is a quarantined 
area for canker, requiring meeting additional regulations for shipping fruit out of the state 
(“Citrus Quarantine and Disease Detection Maps” 2024). In addition to these more dire 
infections, melanose, scab and greasy spot also can be found in Florida. These can be 
controlled with pesticides, and are not as costly as HLB and canker (Singerman and Arouca 
2017). A difficulty of inspecting citrus groves is distinguishing HLB and canker from symptoms of 
more easily treatable conditions (H. Zhang et al. 2021). Citrus disease detection systems must 
distinguish diseased leaf surface from healthy, and perceive differences between infections.  

Leaf Inspection 
Neves et al. (2023) developed a low-cost, early detection system by testing several classifiers 
on features extracted from fluorescence imagery with a convolutional neural network (CNN) to 
distinguish canker, HLB, scab, and zinc deficiency. Kukreja et al. (2023) diagnosed canker 
severity on leaves using a CNN for feature extraction and support vector machines (SVM) for 
classification. Six different severities were classified with 94% accuracy. Pydipati et al. (2006) 
showed that scab and melanose can be more easily detected on the back side of citrus leaves 
due to higher contrast between the leaf surface and the lesions. Using RGB imagery and texture 
features, accuracies above 95% were measured with most models. In 2012, Cardinali et al. 
(2012) demonstrated that spectral differences allow HLB-infected leaves to be accurately 
distinguished from healthy leaves.  

Hyperspectral Imagery & Band Selection 
Instead of the three broad wavelength bands produced by RGB cameras, hyperspectral imagery 
(HSI) includes dozens or hundreds of images in narrow bands, which can facilitate detection by 
accentuating defects. It has been shown that analysis of HSI benefits from consideration of both 
spatial and spectral features (L. Zhang et al. 2018). Food inspection with HSI has proven 
successful commercially (“Case History: Hyperspectral Sorting Detects More” 2021; Tormala 
and Calbucci 2023). Defects detected with HSI include degradation of spinach leaves (Diezma 
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et al. 2013) and foreign objects in dried seaweed (Kwak et al. 2021). Fresh fruits inspected with 
HSI include nectarines (Huang et al. 2021), peaches (Liu et al. 2020), jujubes (Thien Pham and 
Liou 2022), pomegranates (Okere et al. 2023), and mangoes (Velásquez et al. 2024). As 
hyperspectral cameras become more compact and inexpensive (Hogan 2021; Duarte et al. 
2022), in-field applications will become more widespread.  
It is often desirable to reduce the number of hyperspectral bands before processing to reduce 
computational costs and avoid processing redundant information (Yang, Lee, and Gader 2014). 
This has been done with genetic algorithms (Yuan et al. 2020), orthogonal subspace projection 
(Shuaibu et al. 2018), sparse linear discriminant analysis (LDA) (J. Li and Qian 2011), entropy 
distance (Deng et al. 2019), and manual techniques (Wetterich et al. 2016). Alternatively, it is 
often desirable to select bands from the dataset, since extracted bands are less interpretable 
(Du and Yang 2008), and because once selected wavelengths are identified, a comparatively 
inexpensive multispectral camera can be used to capture future imagery at those wavelengths. 
Both the cost of the imaging hardware, and the cost of the image processing hardware must be 
considered on the way towards in-field early disease detection systems. Frederick et al. (2023) 
evaluated an unsupervised and a supervised HSI band selection method on a dataset of images 
of orange peels belonging to five classes. 1-5 bands were selected with each method and used 
to train a custom CNN. A peak overall accuracy of 94.9% was recorded for a model using SVM 
to classify five unsupervised bands. However, with fewer than two bands, the supervised bands 
yielded better classification with either classifier.  
Gray Level Co-occurrence (GLCM) is a well-known, widely used texture feature extraction 
method (Rogers et al. 2023) based on relative frequency distributions (Haralick, Shanmugam, 
and Dinstein 1973). It has been applied to inspect crops and fresh produce, including bananas 
(Olaniyi et al. 2017), pomegranates (Gurubelli, Malmathanraj, and Palanisamy 2020) and grape 
leaves (Yogeshwari and Thailambal 2023). Likewise, bands from imagery of tomatoes (Cho et 
al. 2013) and orchard trees (Abbasi et al. 2020) have been selected with analysis of variance 
(ANOVA). Gómez-Flores et al. (2019) used GLCM features for multiclass citrus leaf disease 
inspection, reaching 81% accuracy. By testing separability of class means in each feature, 
ANOVA can be employed to ‘score’ each feature independently of all the others. 

Deep Learning 
Deep Learning (DL), specifically with the You Only Look Once (YOLO) series of networks, is an 
increasingly popular technique for remote sensing with HSI, offering the advantage of spectral 
and spatial feature extraction (S. Li et al. 2019). Nguyen et al. (2021) employed a CNN feature 
extractor to classify diseased grape vines with HSI, recording a peak accuracy of 75%. 
Modifications to YOLOv8’s architecture and loss function have been studied for detection of 
maize and rice leaf infections (R. Li et al. 2024; Trinh et al. 2024). Although more often used for 
object detection, the YOLO series of CNNs can also classify entire images. Islam et al. (2023) 
trained YOLOv5, YOLOv7, and YOLOv8 to classify seven leafy vegetable diseases, with the 
last of these reaching 100% accuracy. Versions of the YOLOv8 architecture have been shown 
to be effective at citrus detection in the presence of several other disease classes. YOLOv4 has 
been trained (using a 2684-image dataset) to detect anthracnose, bacterial brown spot, and 
melanose on citrus leaves, and was recognized for detection speed (Dananjayan et al. 2022). 
Lyu et al. (2023) employed several variations of YOLOv5 to detect Asian citrus psyllids in 
outdoor images. Qiu et al. (2022) developed and tested YOLOv5 on RGB datasets of citrus 
leaves and fruit with both HLB and similar symptoms, with a peak F1 score of 85%.  
YOLOv8 was released in 2023 (Solawetz and Francesco 2023), but has already been employed 
for citrus inspection. Lu et al. (2023) tested YOLOv8 to inspect citrus peels, finding that despite 
having the fewest parameters of all models tested, it was the second-best performing model. A 
variation of YOLOv8 was trained on RGB imagery of citrus leaves and fruits to detect and 
classify six different surface defects, including melanose, scab, and canker. Segmented defects 
were classified with 93% accuracy and 93% mAP (2023). However, this study used a dataset of 
over 3000 RGB images. 
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Both intensity- and texture-based features have contributed to plant inspection (Ngugi, 
Abelwahab, and Abo-Zahhad 2021). Despite CNNs’ proven performance with RGB imagery, 
little work has combined HSI with YOLOv8 for citrus diseases. Previous work has indicated that 
supervised band selection improved classification (Frederick et al. 2024), but did not answer 
whether the major error modes were limitations of the dataset, the classifier, or the bands 
selected. Nor have previous studies considered spatial relationships when selecting bands for 
leaf inspection, despite CNNs’ suitability for leaf inspection with texture features (Barburiceanu 
et al. 2021). This study demonstrates multiclass classification of diseased citrus leaves with 
multiple variants of the YOLOv8 architecture using hyperspectral imagery, and tests the effect of 
involving texture in band selection.  

Objectives 
The objectives of this study are to: 

• Train YOLOv8 to classify citrus leaf images of seven disease classes (HLB, canker, zinc 
deficiency, scab, melanose, greasy spot, and control) composed of bands selected with 
three methods: ANOVA ranking of pixel values, ANOVA ranking of GLCM features, and 
random choice. 

• Compare the overall and class-specific classification results of these trained models. 
• Evaluate the sensitivity of the classification model to the choice of wavelengths selected 

and size of the classifier network. 

Materials & Methods 

Data Collection 
Approximately 750 citrus leaves primarily from Valencia orange trees and bearing symptoms of 
scab, melanose, HLB, canker, greasy spot, zinc deficiency and a control class were sampled at 
the Citrus Research & Education Center (CREC) (Lake Alfred, FL). Leaves with only one 
condition were gathered—those with symptoms of multiple infections were excluded. These 
leaves were refrigerated and imaged within 48 hours of collection. 4-16 leaves from the same 
class were imaged at a time, depending on leaf size. Both the adaxial and abaxial sides were 
imaged.  
The HSI system (Figure 1) was developed recently at the USDA ARS EMFSL, and provides 
imaging of 348 spectral bands in a wavelength range of 395-1005 nm. Samples were 
illuminated by two separate LED line lights (Metaphase Technologies, Bristol, PA, USA), which 
emit visible and near-infrared (VNIR) broadband light for reflectance imaging and ultraviolet-A 
(UV-A) excitation light for fluorescence imaging. The VNIR light employs LEDs at seven 
wavelengths, namely 428, 650, 810, 850, 890, 910, and 940 nm, while the UV-A light uses a 
single wavelength at 365 nm. The intensities of the LEDs at the eight wavelengths can be 
adjusted through two digital dimming controllers, with three channels each. Specifically, four 
channels are used to regulate the intensities at 365, 428, 650 nm, and a bundle of five NIR 
wavelengths (810, 850, 890, 910, and 940 nm). The lights are angled at approximately 6° from 
the vertical position to overlap their line illuminations on the sample surface. Reflectance and 
fluorescence signals in the VNIR range are collected using a miniature line-scan hyperspectral 
camera (Nano-Hyperspec VNIR, Headwall Photonics, Bolton, MA, USA), which integrates an 
imaging spectrograph and a CMOS focal plane array detector (12-bit and 1936×1216 pixels). To 
capture a wide-angle view, a lens is attached with a 5 mm focal length (Edmund Optics, 
Barrington, NJ, USA) to the camera. Finally, a long-pass gelatin filter (>400 nm, Kodak, 
Rochester, NY, USA) is attached to the lens to remove second-order effects from the UV-A 
excitation. 
A reflectance standard panel, measuring 254×32×15 mm3 (Labsphere of North Sutton, NH, 
USA) is mounted alongside the black, thermoplastic sample holder (measuring 254×197×15 
mm) to allow flat-field correction of the reflectance images. For line-scan image acquisition, a 
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linear motorized stage (FUYU Technology of Chengdu, Sichuan, China) moves the sample 
holder and the reflectance panel beneath the hyperspectral camera. The camera has a spatial 
resolution of 0.33 mm/pixel when set at a lens-to-sample distance of 285 mm. Each camera 
frame is scanned and an 810×348 (spatial × spectral) pixel region of interest (ROI) is extracted, 
covering a spectral range of 395–1005 nm. To prevent the influence of ambient light on the 
images, the LED lights, camera, reflectance panel, and sample tray are all housed in an 
aluminum composite enclosure. This HSI system, measuring 56 × 45 × 60 cm, is easily 
transportable, making it ideal for on-site and field experiments. 

 
Fig. 1. A CAD rendering of the portable HSI system developed at USDA ARS EMFSL used to image leaves for this study 

The system software for this HSI system was developed using LabVIEW (v2022, National 
Instruments, Austin, TX, USA) that runs on a Windows 11 (Microsoft Corporation, Redmond, 
Washington, U.S.A.) computer. A graphic user interface for the software was developed (Fig. 3) 
using LabVIEW’s Vision Development Module (VDM) to enable image and spectrum display. To 
implement parameterization and data transfer functions, software development kits (SDKs) from 
hardware manufacturers were used, including User Datagram Protocol (UDP) for LED light 
control, Universal Serial Bus (USB) for camera control, and serial communication for stage 
movement control. The hyperspectral camera continuously collects line-scan reflectance signals 
as the sample holder is translated below it by a motorized stage. After each measurement, both 
the reflectance and fluorescence images acquired from the same samples are saved into two 
separate data files using a standard format of band interleaved by line (BIL). However, only 
hyperspectral reflectance images were used in this study. 

Preprocessing 
The raw reflectance values were converted to reflectance percentages with spectral calibration. 
This process also involved spectral and spatial binning, leaving a resolution of 1mm per pixel 
and 116 spectral bands. Next, a mask for each leaf was created by thresholding the saturation 
channel of the pseudocolor image and used to set the background pixel values to zero. This 
mask also facilitated spatial division of the images to leave a single leaf in each. Due to 
illumination irregularities, the first and last eight bands were removed from the dataset, as were 
images containing artifacts from camera overheating. The images of the front and back sides of 
each leaf in the dataset were then concatenated. Figure 2 displays a sample pseudocolor image 
from each class after preprocessing. 
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Fig. 2. A pseudocolor sample leaf image from each class after preprocessing  

Band Selection 
To test the effects of texture features, two ‘feature matrices’ were extracted for band selection. 
The first of these was composed of the image pixels, reshaped into a 2D matrix with rows 
corresponding to pixels and columns corresponding to features. The second feature matrix was 
formed by extracting five gray-level co-occurrence matrix (GLCM) texture features from each 
band and appending as a row. The GLCM quantifies occurrences of pairs of pixels values in an 
image, and is a well-known means of extracting texture features from imagery. Several 
statistical features can be extracted from the GLCM, and five were selected for this study: 
Contrast, Dissimilarity, Homogeneity, Correlation, and Angular Second Moment (ASM). 
Formulae for these features can be found in Gómez-Flores et al. (2019). Thus, each row of this 
second feature matrix corresponds to a HSI image and each column to a feature from a specific 
band. Both feature matrices were standardized. 
For feature selection, Analysis of Variance (ANOVA) evaluates whether the difference between 
the means of different classes in each feature is significant using the F-statistic, thus quantifying 
the separability of the classes if that feature is retained. In this application, the features are 
wavelengths or texture features from wavelengths. Typically, only features whose F-statistic 
exceeds a selected significance level would be selected. However, exactly three bands were 
needed regardless of how many bands were significant, and adjacent bands are expected to 
contain much redundant information. Thus, bands were selected from both feature matrices’ F-
scores by lowering the local maxima neighborhood argument until at least three were selected, 
and using the three with the highest scores. The bands chosen using the GLCM feature matrix 
are referred to as GLCM bands, and those from the pixel intensity matrix as pixel bands. Also, 
to provide a baseline for the performance of each class, 20 random combinations of three bands 
were selected, and a model trained on each. Figure 3 summarizes the band selection 
procedures:  
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Fig 3. Summary of band selection methods 

Network & Training Parameters 
The ‘nano’ and ‘small’ versions of the YOLOv8 architecture (Jocher, Chaurasia, and Qiu [2022] 
2023) were utilized, with a model of each size trained on each ANOVA band combination. The 
dataset was randomly split according to a 70/15/15 ratio of training, validation, and test data.  
For ANOVA-based band selection, model hyperparameters were tuned using mutation-based 
hyperparameter tuning, for 50 iterations and 25 epochs per iteration. Default hyperparameters 
were used, except for ‘flipud’, ‘degrees’, ‘shear’, and ‘perspective’, which were initially set to 0.5, 
1.0, 0.1, and 0.1, respectively, and object detection parameters ‘mixup’ and ‘copy/paste’, which 
were set to 0. For the random band combinations, default hyperparameters were used. Each 
model was trained for 300 epochs, with patience set to 50 epochs. The previously extracted 
feature matrices were used only for band selection and were not involved in model training. 

Performance Evaluation 
Overall model accuracy, precision, recall, and F1 score for each class were employed as 
performance metrics. For this application, recall is more critical than precision, especially for 
HLB and canker, since a false indication of one of these infections is less consequential than 
not detecting the infection. Table 1 states the formulae for these metrics, in terms of false 
positives (FP), true positives (TP), false negatives (FN), and true negatives (TN). 

Table 1: Metrics employed to gauge classifier network performance. 
Metric Accuracy Precision Recall F1 Score 

Expression in terms of TP, FP, 
TN, and FN 

𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁 

𝑇𝑃
𝑇𝑃 + 𝐹𝑃 

𝑇𝑃
𝑇𝑃 + 𝐹𝑁 

2𝑇𝑃
2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 

Results & Discussion 

Band Selection 
The ANOVA F-statistics of the ASM features were all considerably higher than those of any of 
the other four GLCM features. Since the scoring of bands was univariate, no adjustment was 
made to the selection procedure and the three bands corresponding to the local maxima of the 
F-statistic curve were selected. These wavelengths were 441.7, 680.4, and 897.8 nm, and are 
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displayed with the F-statistics in Figure 4. 

 
Fig. 4. GLCM feature matrix F-statistics and GLCM bands selected 

The pixel feature matrix yielded wavelengths of 600.8, 701.6, and 765.2 nm, and the F-statistics 
for the pixel feature matrix are plotted in Figure 5 with the pixel bands. 

 
Fig. 5. Pixel-based F-statistics and resulting bands 

Previous band selection work on this dataset also selected the 441.7 and 600.8 nm bands, but 
did not select any band above 722.8 nm. Supervised bands maximizing separability ranged 
from 489.5 to 600.8 nm (Frederick et al. 2024). This departure from the green range of the 
spectrum, especially for the pixel bands, is a result of using local extrema to counteract 
selection of adjacent bands—the range of previously selected bands all have F-statistics greater 
than 45000. Separability indicated by the peak at 765.2 nm was apparently not recognized by 
the previous methods. 

Classification 
Table 2 summarizes the overall performance of each model, including the mean accuracy and 
weighted F1 Score. Figures 6-8 display the percentage of images from each test set class that 
were classified into each class for all five models. 

Table 2. Overall performance of all models. For the random band results, means and standard deviations are reported. 
Band Selection Method Wavelengths (nm) Model Size Accuracy (%) Weighted F1 Score 

GLCM 436.4, 680.4, 892.5 Nano 81.36 0.8156 
Small 88.13 0.8822 

Pixels 600.8, 701.6, 765.2 Nano 86.44 0.8622 
Small 88.98 0.8959 

Random Band Combinations Nano 84.19 (σ = 4.3%) 0.8406 (σ = 0.044) 
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Fig. 6. Confusion matrices of classification models using GLCM features reported in percent of true samples 

 
Fig. 7. Confusion matrices of classification models using Pixel (intensity) features reported in percent of true samples 

 
Fig. 8. Mean confusion matrices of classification models using three random bands reported in percent of true samples 

Figures 9-10 display the class-specific results for each model. Distance from the center of the 
plots indicates higher values—for instance, for precision in Greasy Spot, the lines for each 
model lie at the edge of the plot. These metrics are also listed in Table 3. Overall performance 
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differences primarily stem from the Control, Canker, Melanose, and Greasy Spot classes. 
Table 3. Precision, recall, and F1 scores for each class and each model. 

  Control Scab Greasy 
Spot Melanose Canker Zinc 

Deficient 
Blotchy

/HLB 

Precision 

Pixels, nano 0.875 0.813 1.000 0.842 0.789 0.950 0.850 
GLCM, nano 0.524 0.929 1.000 0.786 0.700 0.952 0.944 
GLCM, small 0.714 0.933 1.000 0.938 0.778 0.950 0.944 
Pixels, small 0.867 0.875 1.000 0.882 0.810 0.952 0.941 

Random Bands 0.736 0.857 0.989 0.816 0.762 0.961 0.886 

Recall 

Pixels, nano 0.778 0.867 0.667 0.941 0.789 0.950 1.000 
GLCM, nano 0.611 0.867 0.833 0.647 0.737 1.000 1.000 
GLCM, small 0.833 0.933 0.833 0.882 0.737 0.950 1.000 
Pixels, small 0.722 0.933 0.833 0.882 0.944 1.000 0.941 

Random Bands 0.725 0.897 0.700 0.815 0.792 0.935 0.991 

F1 Score 

Pixels, nano 0.839 0.800 0.889 0.789 0.824 0.950 0.919 
GLCM, nano 0.897 0.909 0.710 0.718 0.564 0.976 0.971 
GLCM, small 0.933 0.909 0.909 0.757 0.769 0.950 0.971 
Pixels, small 0.903 0.909 0.882 0.872 0.788 0.976 0.941 

Random Bands 0.873 0.816 0.811 0.771 0.726 0.947 0.934 

 
Fig. 9. Precision and Recall of all models with results for the random bands as means of all 20 models 

 
Fig. 10. F1 Scores of all models with mean results for the random band combinations. 
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Discussion  
Of all the factors tested, network size exerts the greatest effect on classification performance. 
Each of the small models exceeded an 0.88 F1 score, whereas performance with the nano 
architecture varied between 0.82 and 0.86. The greatest difference between the highest 
performing model (pixel bands with a small network) and the others is observed in recall of 
Canker and Greasy Spot. Only for Greasy Spot did the GLCM bands show any clear advantage 
in recall. For small models, the GLCM bands displayed slightly improved recall in HLB, Scab, 
and Melanose, but considerably worse recall of Canker. The nano model using GLCM bands 
was outperformed in Control, Canker, and Melanose by both other nano models.  
Recall of HLB was nearly equal for all models, as was precision of Greasy Spot. This can 
probably be attributed to HLB covering the majority of the leaf surface, while Greasy Spot and 
Melanose have very distinct discoloration regions, making them less likely to be hidden by the 
1mm/pixel resolution. Zinc Deficient leaves, despite displaying a similar color to HLB, are 
generally smaller and leave more pronounced and visible leaf veins compared to HLB (see Fig. 
2). As a result, this class was the best classified by all models.  
For each model, the Control class created a major error mode, being misclassified into 
Melanose and Canker. Since practically all the leaves in the dataset will contain at least some 
healthy leaf area, classes whose symptoms are small lesions are particularly likely to be 
confused with Control. With the GLCM bands, Canker was also often mistaken for Control, but 
with the pixel bands, the Canker leaves were not misclassified into Melanose or Control. 
Even without the benefit of hyperparameter tuning, the random band combinations generally 
matched the performance of the nano model using pixel bands. Only for Control and Melanose 
did the nano model with pixel bands substantially outperform the mean random model. This 
finding, paired with the standard deviation of the random band results, calls into question the 
necessity of intentional band selection for YOLOv8 classification to detect Canker and HLB. 
However, YOLO is limited to three bands, so band selection is still necessary. As can be seen in 
Figure 5, several bands surrounding 600 nm presented similar F-statistics. It is likely that these 
bands contain similar information and that combinations including any of them in place of 600.8 
nm would yield similar performance. Similarly, compared to those of the other GLCM features, 
the range of the F-scores of the ASM features (<1) is very small relative to the values (≈112). 
This indicates that despite the classes being more separable with this GLCM feature than with 
any other, no band offers a substantial advantage for classification using ASM from that band. 

Conclusion  
Management of citrus pathogens requires distinguishing HLB and canker from other citrus leaf 
conditions. Hyperspectral imaging combined with deep-learning-based analysis permits 
accurate classification of these infections. Two supervised band selection methods were 
employed to select three wavelengths from hyperspectral imagery of both sides of citrus leaves. 
YOLOv8 was trained to classify these images, reaching an accuracy of 89.0% with a small 
YOLOv8 network and pixel intensity-based bands. With all band combinations, Zinc Deficiency 
and HLB were the best distinguished classes. Both ANOVA-based band combinations classified 
HLB with recall and F1 score of at least 0.941 and 0.919, respectively. Confusion between 
Canker and Control lowered the texture-based band combination’s overall accuracies to 81.36% 
and 88.13% for the nano and small networks, respectively. Thus, these results fail to 
demonstrate that involving texture in the band selection process offers any performance 
improvement. A larger network significantly improves performance, but this benefit must be 
weighed against memory and processing requirements and suitability for in-field, embedded 
applications. 

Future Work 
A limitation of the classification approach is that each leaf can only be assigned to one disease 
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class. This is undesirable, since citrus diseases differ in frequency of occurrence and severity. 
Training a model for semantic segmentation of leaves into disease and healthy regions would 
permit detection of different infections on the same leaf, and avoid the possibility of false 
negatives in more critical pathogens.  
Since ASM was shown to yield the highest F-statistics, no other GLCM features influenced band 
selection. However, it is not apparent whether and/or to what extent ASM corresponds to the 
textural features the classifier networks learned to exploit. Bands favored by the other textural 
features may complement YOLOv8 better. On a similar note, most models accurately identified 
HLB and Zinc deficiency, but confused Control, Canker, and Melanose. The band selection 
methods tested in this study treat all classes equally, despite two being the primary focus. 
Bands could be chosen to target major classification error modes. Although the mean results of 
the 20 random combinations of three bands were only slightly worse than the other nano 
models, they don’t rule out a subset of wavelengths permitting significantly better classification 
than the others. It is possible that the mean performance results from a mixture of ‘better’ and 
‘worse’ band choices. Further work might empirically identify this subset. 
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