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Abstract.  
Agriculture, particularly in arid and semi-arid regions, consumes a significant portion of global 
water resources, necessitating precise and cost-effective monitoring techniques for crop water 
status to enhance water use efficiency and crop productivity.. This scenario of water scarcity, 
underscores the need for a more effective and precise monitoring of the crop water status to 
optimize irrigation scheduling and improve crop water use efficiency. Remote and proximal 
sensing, combining visible, multispectral and thermal capabilities at different scales allows to 
estimate water needs, detect and quantify crop water stress, or identify different productivity 
zones within an orchard. 
The research demonstrates that the Crop Water Stress Index (CWSI), derived from both ground-
based UAS-based monitoring, is a reliable indicator of water status in almond. This study 
highlights the successful correlation of CWSI with physiological traits stomatal conductance (gs), 
net carbon assimilation (An) and, especially with stem water potential (R2 ≥ 0.85). In general, the 
results obtained underscore the utility of UAS in almond precision agriculture. CWSI was able to 
detect water stress before water deficit was enough to impact net carbon assimilation, providing 
timely data for operational water management. The integration of CWSI with multispectral 
vegetation indices (VIs) from UAS further extends its applicability, offering a practical and effective 
solution for large-scale monitoring. The study explores 34 multispectral vegetation indices (VIs), 
highlighting the results of those pigment-related ones such as the Canopy Chlorophyll Content 
Index (CCCI),, the MERIS Terrestrial Chlorophyll Index (MTCI), the Carotenoid Reflectance Index 
2 (CRI2), and the Anthocyanin Reflectance Index 2 (ARI2) and their relationship with ground-
based physiological measurements. These indices offer a validated approach for detailed 
physiological monitoring, enhancing decision-making related to almond crop management. 
Besides, the creation of Growth Variability Maps (GVMs) from satellite data, integrated with UAS-
based CWSI maps, further refines the monitoring process, enabling targeted water application 
and optimizing resource use. UAS-based CWSI provided high-resolution spatial data, capturing 
the variability of water stress and cumulated transpiration across the orchards. The findings also 
emphasize the need for meticulous data pre-treatment and calibration in thermal monitoring to 
achieve reliable results.  
This comprehensive approach provides a robust framework for improving water use efficiency in 
almond orchards, particularly in water-scarce regions like southeast Spain.In conclusion, the 
study confirms the practicality and effectiveness of UAS-based thermal imaging and multispectral 
analysis for real-time water stress monitoring in almonds, offering significant implications for 
enhancing agricultural water management practices. 
Keywords.   
Evapotranspiration, UAS, thermal remote sensing, water stress, canopy temperature.  
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Introduction 
Considering the evolving climate change and the increasing disparity between water availability 
and demand, agricultural producers face significant water resource constrains, particularly in arid 
and semi-arid regions (Martínez-Valderrama et al. 2023; Tian et al. 2023). Currently, agricultural 
activities account for a substantial portion—ranging from 70% to 90%—of global water utilization 
(Morison et al. 2007). Consequently, there is an imperative to enhance agricultural water use 
efficiency through improved irrigation practices and the implementation of precise, cost-effective, 
and timely monitoring protocols for assessing crop water status. Aiming to augment both the 
quantity and profitability of food production while conserving water resources, the identification 
and measurement of plant stresses are of considerable importance for agriculture as a whole and 
for precision farming specifically (Neupane and Guo 2019). A paradigmatic case in this context is 
the cultivation of almond trees (Prunus dulcis (Mill.) D.A. Webb). The harvested area of this crop 
have increased in more than 350% globally during the last 70 years (FAOSTAT data, 2023). 
Specifically in Spain, the irrigated almond tree extension has doubled between 2015 and 2022 
(MAPA, 2022), especially in water-scarce regions, such as those of southeast Spain. In this 
context, the need for better and more accurate monitoring of almond trees water status is crucial 
for their future profitability in the medium term.  
Water stress monitoring can rely on direct measurements of soil water content and crop 
physiological traits on-site, such as stomatal conductance, net carbon assimilation or water 
potential. Despite its demonstrated accuracy and reliability, these methos are characterized by 
considerable time investment, labor requirements, and financial costs (Joaquim Miguel Costa et 
al. 2019). Moreover, such methods often fail to address the spatial heterogeneity inherent in soil 
and crop distribution. Alternatively, remote sensing techniques offer distinct advantages, notably 
through assessments of canopy temperature or canopy reflectance, owing to their ease of 
implementation, non-invasiveness, and reduced labor demands (Araus and Cairns 2014). 
Remote sensing stands out as a potential tool, facilitating spatiotemporal monitoring of water 
stress and irrigation management(Bhatti et al. 2023). 
At present, numerous studies are conducted on crop water stress assessment using satellite data 
(Ahmad et al. 2021; Campoy et al. 2019). However, an operational and easy-to-use crop 
monitoring often require high temporal frequency and sufficiently detailed spatial resolution to 
detect water deficit. The detection of early water deficit, for example by initial stages of declined 
stomatal conductance or water potential allows for effective data-driven decision-making. In this 
regard, satellite remote sensing products are limited by relatively low spatial-temporal resolution 
and susceptibility to weather conditions (e.g. clouds). Additionally, in woody crops, such as 
almonds, where the vegetation cover does not encompass the entire image, further complicates 
the interpretation of satellite-derived results. Conversely, UAS-based remote sensing offers high 
flexibility, short operational cycle, and high resolution, reaching very precise levels of detail for an 
effective decision-making on crop water stress assessment at farm level (Burchard-Levine et al. 
2024). Numerous indices derived from drone imagery, including multispectral, thermal, and even 
RGB-based images, have studied water stress monitoring in crops. 
Thermal indices are commonly used for evaluating crop water status (Costa et al. 2019; Sánchez-
Virosta and Sánchez-Gómez 2020). This is based on the principle that crop canopy temperature 
(Tc) rises with increasing water deficit. An early response to water deficit in plants is stomatal 
closure, which reduces transpiration and a decline in evaporative cooling, and thus raises leaf 
and canopy temperatures. Many studies have integrated thermal cameras on UAS platforms to 
assess water stress in several crops, especially in herbaceous (Gómez-Candón et al. 2021) but 
also in woody crops (Gómez-Candón et al. 2016). Some attempts have been carried out on UAS-
based thermal monitoring in almond (Guimarães et al. 2024 and references therein). However, 
Tc data should be carefully monitored. Tc is influenced not only by water supply but also by 
micrometeorological conditions such as air temperature (Ta), relative humidity (RH), and vapor 
pressure deficit (VPD). To buffer this meteorological effect on Tc, the Crop Water Stress Index 
(CWSI,Idso et al. 1981) based on canopy temperature and certain meteorological parameters, 
has been investigated as an effective method for monitoring the water status of woody species 
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like grapevines (Prueger et al. 2019), peaches(Joaquim Bellvert et al. 2016; Ramírez-Cuesta et 
al. 2022), olives (Berni et al. 2009; Roma et al. 2023), and also in almond (Joaquim Bellvert et al. 
2018; Gonzalez-Dugo et al. 2019; Gutiérrez-Gordillo et al. 2020). These studies generally report 
promising results on CWSI as a tool for water stress monitoring. However, it is also well-
recognized that UAS-based thermal data also have constraints. For example, Gutiérrez-Gordillo 
et al. (2020) tried UAS-based CWSI monitoring which was not precise enough to capture the 
differences between control and deficit-irrigated trees that were observed with stem water 
potential. In this, sense unstable canopy temperature acquisition and low mosaic precision, 
necessitates complex pre-treatments like radiometric calibration, temperature correction, and 
canopy temperature extraction. Therefore, pre-treatment and thermal calibration, along with 
comparison and correction of this data with ground-based infrared thermometry is crucial for its 
reliability as an operative tool. Along with this, to corroborate CWSI utility as a management tool 
more studies are needed to address the correlations between CWSI with physiological traits and 
its capability to detect intra-plot variability. Hence, this study tries to address these factors, being 
essential for the assessment of CWSI as a potential tool for decision-making in almond irrigation 
management. 
In addition, multispectral vegetation indices (VIs), which result from mathematical operations on 
vegetation reflectivity, can be used to monitor the condition of surface vegetation. VIs have been 
successfully applied in agronomy on diseases detection, physiological performance, and water 
deficit monitoring (Ali et al. 2019; Berger et al. 2022; Sishodia et al. 2020). In this sense, water 
stress can affect the structure of the vegetation canopy, photosynthesis, and leaf moisture 
content. In this study, we calculated up to 34 VIs from a multispectral sensor and compared them 
not only with CWSI obtained from thermal flights but also with ground-based physiological 
measurements to assess multispectral UAS-based data as a potential tool for precision 
agricultural management. 
Finally, despite management practices within agricultural plots are typically uniform over time and 
space for a single crop, characterizing intra-field variability is crucial for sustainability and resource 
efficiency. UAS-based monitoring along with satellite data and ground proximal sensing enable 
precise determination of growth differences and water needs aiding agronomic decision-making. 
Growth Variability Maps (GVMs) from satellite imagery, effectively describe variability and inform 
management decisions. This study addresses the validation GVMs' ability to identify intra-field 
growth differences in almond trees, using high-resolution drone data and distributed plot 
measurements, providing insights into the causes of variability within farm level. 
The primary objective of this study is to evaluate and analyze UAS-based data as innovative and 
operational tools for detecting water deficit in almond trees. Additionally, the study aims to assess 
the variability within almond plots and evaluate how thermal and multispectral data correlate with 
ground-based physiological variables in almonds. This will open a window for the identification of 
limitations and potential improvements on decision-making tools from UAS-based measurements 
in almond orchards. 

Material and Methods 

Field sites and experimental design  
Two commercial drip-irrigated almond orchards situated within the Albacete province (SE Spain) 
were subject to monitoring, each positioned approximately 25 km apart. The first study site, 
situated in Hellín (38.48417N, -1,78583W), with 12.5 hectares (cv. Penta) was established in 
2018, with a plantation framework of 6 m x 5 m. As depicted in Figure 1, the experimental design 
in Hellín incorporates complete random blocks, encompassing three distinct irrigation treatments, 
non-deficit (ND), moderate deficit (MD) and severe deficit (SD). Each irrigation treatment was 
replicated in three plots, comprising each plot 15 trees, arranged in three rows of five plants each. 
A daily irrigation based on the soil’s water balance without any water restriction was applied in 
the ND treatment. The dual crop coefficient (Kcb + Ke), as proposed by Allen et al. (1998) and 
recently updated by Rallo et al. (2021), was applied. Thus, four different stages (I, II, III and IV) 
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were defined as follow: stage I: from swollen bud to onset of fruit set; stage II: from onset of fruit 
set to fruit final size; stage III: from fruit final size to harvest; and stage IV: from harvest to onset 
of leaf drop. ND treatment was designed to receive the 100% of the crop water requirements 
(CWR) across the four former stages; MD wasdesigned as ND but receiving the 75% of the CWR 
during the stage III; while SD, was designed to receive the following percentages of the CWR: 
100% during the stage I, 75% during stages II and IV, and 50% during stage III. Due to a delay in 
the installation of the irrigation system, the contribution in percentage of total irrigation with respect 
to the ND was 22% less for the SD treatment and 7% less for the MD treatment (Fig.2B). 
The other site, in Tarazona de la Mancha (Tzn) (39.2660N, -1.9397W) the almond orchard with 
10 ha, was established in 2017. In this instance, plant and row spacings was 4.5 and 6.5 m 
respectively, resulting in a density of 342 trees per hectare (Fig. 1). Identical units of N-P-K as 
those applied in Hellín were applied, adhering to the recommended fertilization program. Irrigation 
was based on farmer decision, with lower frequencies of irrigation but in higher amount of water 
per irrigation event compared to Hellín (Fig. 2A). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Location of the two almond orchards within Spain 3A) and 3D) the province of Albacete. In 3B) an aerial image of 
the Tarazona plot is provided with irrigation sectors marked in red in 3C). The almond orchard of Hellín highlighted in 

orange in 3E) is divided in 3F) three different irrigation treatments: red is severe deficit; orange is mild deficit and blue is 
control (no deficit applied). 

Meterological data measurements 
Both almond orchards are provided with a full-equipped weather station. In Hellín, meteorological 
instruments are placed in a mast at a height of 5.0 m above the ground, whereas in TzM the 
instrumentation was deployed in a tower at a height of 6 m, to guaranty 2 m separation from the 
canopy top. Data were recorded at 15-minute, hourly, and daily intervals using CR1000 and 
CR1000X dataloggers (Campbell Scientific Instrument, Logan, UT, USA). The variables 
measured included the four components of the net radiation (models CNR01 in Hellín and, NR01, 
Hukseflux, Delft, The Netherlands), air temperature and relative humidity (HC2A-S3, Campbell 
Scientific Instrument, Logan, UT, USA in Hellín, and HMP45AC, Vaisala, Helsinki, Finland in 
TzM), wind speed and direction (03002 Wind Sentry, R.M. Young, Traverse City, MI, USA), and 
rainfall (52203 Rain Gauge, R.M. Young, Traverse City, MI, USA).  
Two sets of 4 thermal InfraRed thermometers (IRT) each (SI-121 and SI-421, Apogee 
Instruments, Inc., Logan, UT, USA) were deployed in both orchards for the continuous thermal 
monitoring of the almond tree canopy and soil (Montoya et al. 2022). Three of the IRTs were 
assembled pointing downward with an angle of 45°, two of them to the canopy top at both, east 
and west side trees in Hellín, and north and south side trees in TzM, and a third to the inter-row 
soil. The full set of thermal measurements was completed with an additional IRT pointing upward 
to measure the downwelling sky radiance required for the atmospheric correction of all the 
radiometric temperatures. Vapour pressure deficit (VPD), utilized in the Non-Water Stress 

A) B) C) 

D) E) F) 
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Baseline (NWSB) calculation (explained in detail below), was obtained using Equation (1): 

𝑉𝑃𝐷 = 𝑒𝑠	 × !""#$%
!""

  and 𝑒𝑠 is calculated as: 𝑒𝑠 = 6.11	 × exp( &
'(
( !
)*+

)− !
,
)) (1) 

where es is the saturation vapour pressure in mbar, L is the latent heat of vaporization (2.5 106 J 
kg-1), Rv is the specific gas constant for water vapour (461 J K-1 kg-1) and T is the current air 
temperature (K). RH is the relative humidity (%). 
 
 

 

 
Figure 2. Evolution of air temperatures (daily minimum, daily maximum and at 12h UTC), effective precipitation and 

irrigation in A) Tarazona and B) Hellín. UAS flight dates are marked within the plot for each location. 
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Physiological-based and ground data collection 
Gas exchange data 

In Hellín site, net assimilation rate (An), stomatal conductance (gs), leaf transpiration (Emm) and 
internal CO2 (Ci) values were assessed using a portable photosynthesis system for gas exchange 
measurements (LI6800-TX model, LI-COR Bioscience, NE, USA). The intrinsic water-use 
efficiency (WUEi) was computed for each plant as the ratio of An and gs. Leaf chamber 
parameters for data collection were adjusted based on the test area's conditions: atmospheric 
CO2 concentration set at 400 μmol mol-1, air temperature maintained at 25.0 ± 0.5 ºC, relative 
humidity at 70 ± 5 %, airflow set at 650 μmol s-1, and photosynthetic photon flux density (PPFD) 
at 1500 μmol m-2 s-1. Concurrently with UAS multispectral and thermal flights, gas exchange 
readings were taken in the two central trees of each plot within the three treatments. 
High accuracy infrared thermal data 

Concurrent to each UAS flight time, temperature transect measurements were performed with a 
CIMEL Electronique CE 312-2 high-accuracy multispectral thermal radiometer (Legrand et al. 
2000). This instrument has five narrow bands and a broadband in the spectral range between 8 
and 13 μm. For this work channel 3 (10.2-11.0 μm) was selected for the measurements (Coll et 
al. 2019).  Specifically, three almond trees per irrigation treatment were monitored, covering East, 
South, West and North orientations of the trees. Radiometric temperatures, both from CIMEL and 
IRT were atmospheric corrected from downwelling sky radiance and almond canopy emissivity 
effects following the procedure described in Sánchez et al. (2014). 
Stem water potential 

Almond stem water potential (SWP, MPa) was evaluated concurrent to each UAS flight between 
May and September in both locations. In Hellín, a total of 12 SWP measurements per treatment 
were conducted, measuring 2 central trees within each of the 6 plots per treatment, resulting in a 
total of 36 measurements. In Tzn, 4 different areas within the orchard were selected for SWP 
monitoring based on the growth variability maps of the previous season. In those areas, 3 trees 
were measured. All the SWP were performed using the same Scholander pressure chamber 
(PMS Instruments; Corvallis, OR, USA). For sampling, one shaded leaf per tree near the trunk 
base (two trees per elementary plot) were selected, with the chosen leaves covered in aluminum 
foil for at least one hour before measurement. 

UAS flights 
For the acquisition of thermal data, a Zenmuse H20T camera (Zenmuse XT, FLIR System, Inc., 
USA, 8-14 µm) with a resolution of 640 × 512 pixels and a 24 mm focal length, with a FOV of 
40.6° was mounted on a DJI Matrice 350 RTK UAS. An altitude of ∼80 m was set for the flight 
plans, providing a Ground Sample Distance (GSD) of 10 cm. The thermal imagery was calibrated 
using ground temperature data collected with an Apogee MI-220 radiometer on ground 
temperature measurements. The same UAS platform was employed for multispectral flights using 
the MicaSense RedEdge P sensor (Micasense, 1300N NorthlakeWay, Seattle, USA), provided 
with five spectral bands located at the wavelengths 475 ± 32 nm (blue), 560 ± 27 nm (green), 668 
± 14 nm (red), 717 ± 12 nm (red edge), and 842 ± 57 nm (near infrared), and a field of view (FOV) 
of 50°, achieving a GSD of 5 cm in this case. Flights were conducted from May to September of 
2023, centered at ∼12:00 h GMT,  always under clear-sky conditions and with a wind speed below 
12 m/s. The thermal infrared and multispectral mosaic images were acquired using the 
photogrammetric PIX4Dmapper© sofware. 

CWSI calculation and CWSI maps 
Canopy temperatures obtained from both, ground measurements using the CIMEL and H20T 
thermal images from UAS flights, were used to estimate the Crop Water Stress Index (CWSI). 
For this purpose, the following equation was used: 
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𝐶𝑊𝑆𝐼 = (,.#,/)#(12#13)&&
(,.#,/)45#(12#13)&&

    (2) 

where (Tc-Ta) represents the measured difference between canopy and air temperatures; (Tc-
Ta)LL is the expected lower limit of this difference for a potentially transpiring canopy, and (Tc-
Ta)UL represents the expected differential for a non-transpiring canopy. The lower and upper 
limits of equation (2) can be derived following the methodology proposed by Idso et al. (1981). 
Under optimal water availability conditions, Tc-Ta exhibits a linear relationship with the vapor 
pressure deficit (VPD), forming the Non-Water-Stressed Baseline (NWSB). The upper limit is a 
constant, obtained from the highest Tc-Ta values of the dataset. This method is contingent on the 
climatic conditions of the site. The NWSB establishes the lower limit for calculating the Crop Water 
Stress Index (CWSI) and can be empirically determined by regressing the canopy-air temperature 
differential (Tc-Ta) against the VPD on clear, sunny days under optimal irrigation conditions, 
typically measured around midday. The dataset utilized to calculate the NWSB, was obtained 
from both sites in Tarazona and Hellín (outside the irrigation treatment plots), in those days under 
optimal irrigation conditions to collect a comprehensive dataset from May to August 2023 with 
values assessed at 15-minute intervals between 10:00 and 12:00 UTC. The UAS-based 
temperature data were used to estimate CWSI maps. 
CWSI maps 
To generate orthomosaics and vectorize tree crowns, images were acquired from a DJI Phantom 
4 RTK drone. These images were subsequently processed to create precise orthomosaics, Digital 
Surface Models (DSMs), and Digital Terrain Models (DTMs). All captured data were converted 
into accurate geospatial information using PIX4Dmapper© sofware, version 4.6.4 (PIX4D S.A., 
Prilly, Switzerland). Each type of sensor produced specific raster layers that were calibrated and 
aligned to ensure consistency among the various data sources. Subsequent data processing was 
conducted in QGIS software, version 3.28.10 (QGIS Development Team, Open Source 
Geospatial Fundation Project). To discriminate tree crowns from the underlying soil, the difference 
between the DSM and DTM was calculated. A geospatial grid, aligned with the tree planting 
pattern, was designed, with each grid element corresponding to an individual tree and assigned 
a unique ID.  

Growth Variability Maps 
The Growth Varibility Maps were developed based on the determination of daily potential 
transpiration. Using the Kcb/NDVI relationship proposed by Campos et al. (2010): 

Kcb=1.44⋅NDVI−0.1                                                                                                 (3) 
where we obtain the basal crop coefficient (Kcb). This coefficient, together with daily data of the 
grass reference evapotranspiration (ETo) and NDVI (obtained from the temporal interpolation of 
NDVI values derived from satellite images), allows the derivation of sequences for the 
accumulated potential transpiration. The TONIpbp, an own developed model, operates pixel by 
pixel, within the specified time interval from the start to the end of the desired crop cycle. The 
result is a map of accumulated potential transpiration for the specified area. Equation 4 
synthesizes the growth model that allows the calculation of accumulated potential transpiration: 

T6,3289 = ∫ T6 ∙ 	d(t)
:
:!

	=∫ K2; ∙ 𝐸𝑇< ∙ d(t)
:
:!

     (4)  

where 𝑇𝑝,𝑎𝑐𝑢𝑚 is the potential transpiration per unit area accumulated during the period between 
𝑡0 and 𝑡t in mm; 𝑇𝑝 is the potential transpiration of the crop in mm; 𝐾𝑐𝑏 is the basal crop coefficient 
(dimensionless); 𝐸𝑇𝑜 is the grass reference evapotranspiration in mm·day−1, obtained from the 
nearest meteorological station. 
 
For each spatial unit, in this case, the satellite pixel size, the variable 𝑇 can vary due to various 
factors both biotic and abiotic. Therefore, based on the accumulated potential transpiration during 
the entire growth cycle of a crop in a given pixel along with the average accumulated potential 
transpiration value of the plot, variability can be calculated as: 
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			 	 	 	 (5)	

where 𝑇𝑝,𝑎𝑐𝑢𝑚 is the accumulated potential transpiration value during the entire growth cycle of 
the crop in a given pixel, in mm; TP6,3289	is the average accumulated potential transpiration value 
of the plot, in mm.  

Statistical analysis 
ANOVA analyses were performed to detect statistical differences among different factors 
(irrigation treatment or site) for CWSI and VIs data. Pearson correlations and test for the 
significance of the regression coefficients were also conducted for the parametrization of CWSI, 
Vis and physiological data. All the statistical analyses were done using RStudio (R version 4.3.3). 

Results and Discussion 

Non-Water Stress Baseline (NWSB)  
Unlike the traditional method, which utilizes dry and wet references, the NWSB in the empirical 
approach is established by relating Tc-Ta to vapor pressure deficit (VPD) through linear 
regression analysis. This empirical method of calculating CWSI offers the advantage of simplicity 
in computation, requiring only two additional parameters (air temperature and relative humidity). 
Idso et al., (1981) reported that different crops had their own unique NWSBs. However, even for 
the same crop, NWSB can change being dependent on factors such as seasonal or hourly 
differences (Romero-Trigueros et al. 2019; Sánchez-Piñero et al. 2022), crop phenological stage 
(Zhang et al. 2019), or cultivar(Gutiérrez-Gordillo et al. 2020) among others factors. This 
sensitivity of the empirical NWSB to changes in location and climate variables has been a subject 
of criticism in some studies (Gonzalez-Dugo et al. 2014; Gonzalez-Dugo and Zarco-Tejada 2024). 

 
Figure 3. NWSB of the CWSI at the distinct locations. Blue dots correspond to Hellín and red dots to Tarazona. Different 
equations and R2 are obtained depending on the source of data: Equation in blue corresponds to data in Hellín, in red in 

Tzn and in black is the consolidated one with data from the two plots. 

However, in the present study, a remarkable alignment was observed between the two locations, 
Tzn and Hellín, where the slopes of the NWSB were -0.91 and -0.88, respectively. In Tzn dataset, 
fewer data points are shown due to both unfavorable weather conditions or longer periods of 
irrigation restrictions, as shown in Fig. 2A. However, this dataset presented similar slope that the 
one obtained in Hellín, allowing to consolidate the same NWSB for both locations obtaining a 
slope of -0.90. These specific-location slopes and the consolidate one, are in agreement with 
those found onBellvert et al. (2016). Despite criticisms surrounding the empirical NWSB model's 
sensitivity to location-specific and climate-related factors, this study demonstrates a notable 
alignment between two distinct locations. This good alignment found here could be related to a 
proper instrument calibration and atmospheric correction along with the regular calibration of the 
used thermal sensors with high accuracy black bodies. Besides, the elimination of data points 
when climatic parameters or irrigation supply were not ideal was carefully assessed. In this sense, 
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these factors are essential in thermal monitoring and sometimes are overlooked (Tunca et al. 
2023). By achieving this consolidation on the NWSB for both locations, the study reaches an 
operational efficiency in almond CWSI calculations. Nevertheless, these NWSBs results need to 
be corroborated in future studies to corroborate this promising results. 

Ground and UAS-based CWSI of almond and its correlation with physiological variables 
The empirical CWSI results, despite its relatively stable range (0–1) for quantifying crop water 
stress, may also be sensor-, site- and climate-specific, or could vary annually due to differences 
in micro-meteorological conditions within the same field. To corroborate the reliability of CWSI 
measurements, an analysis of the correlations between CWSI derived from both ground-based 
measurements (CWSI_CIMEL in Fig. 4) and that obtained from UAS measurements (CWSI_UAS, 
in Fig. 5) were carried out.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. Relationships between CWSI obtained with a CIMEL CE312-C2 high-precision thermal radiometer (CWSI_CIMEL) 
on West Canopy Orientation and A) stem water potential (SWP ); B) Stomatal conductance (gs); C) Net carbon assimilation 
rate and D) Intrinsic Water Use Efficiency (WUEi). Data represents mean values pooled by date and irrigation treatment in 
Hellín almond orchard. Error bars are standard deviation of both CWSI and physiological traits. Data was obtained in 2-3 

trees randomly located in the central part of the plot and within treatments.  

As depicted in Figure 4, significant correlations were found between the CWSI_CIMEL and 
various physiological variables. Each of these correlations was statistically significant (p<0.05). 
The most pronounced correlations were observed with SWP and WUEi, while the correlation with 
An was comparatively weaker. Fig. 4C, presents evidence that the variability in An was minimal, 
with only two values falling below 15µmol m-2 s-1, denoting a low impact on almond photosynthesis 
(Sperling et al. 2023). Conversely, a higher degree of variability was noted in the remaining 
variables, particularly SWP. This phenomenon of increased variability in water-related traits such 
as SWP, gs, or WUEi compared to An is a well-documented physiological response to early water 
deficit, since under moderate water deficit, plants are capable of regulating water loss through 
stomatal closure without significantly impacting net assimilation (Chaves et al. 2003; Pardo et al. 
2022).  
However, it should be noted that not all CIMEL measurements performed equal and were 
orientation dependent. In Fig. 4 the results shown corresponds to those Tc measured at west 
orientation of the canopy, presenting similar results at those on N orientation, where SWP and 
gas exchange measurements were done. On these orientations, all the leaves were under the 
same conditions of shading. In contrast in South and East orientations, the R2 of correlations with 
SWP decreased ca. 35%. These results emphasize the importance of protocol canopy 
temperature (Tc) measurements. In summary, when done properly, these thermal measurements 
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along with physiological monitoring by gas-exchange and SWP monitoring where capable to 
reflect the plants' water status conditions. However, these ground-based methods are labor-
intensive, costly, and impractical for large-scale monitoring due to the spatial heterogeneity of 
water stress within agricultural fields. The UAS-based methodology tries to resolve these 
constrains of ground-based monitoring. In this sense, the results of CWSI (CWSI_UAS) indicate 
that this method can be an effective tool to detect not only physiological performance (Fig. 5) but 
also inner spatial variability of water stress across the orchard (see Fig. 7).  

 

 

 

 

 

 

 

 

 

 

Figure 5. Relationships between CWSI and A) stem water potential (SWP ); B) Intrinsic Water Use Efficiency (WUEi) and C) 
net carbon assimilation rate measured on August 23 in Tzn and August 21 in Hellín. Black triangles with error bars 

represent mean treatment values ± standard deviation. Blue dots represent plot values (2-3 trees randomly located across 
the plot and within treatments) and orange dots represent single tree values 

As occurred with CWSI_CIMEL, strong correlations between CWSI_UAS and SWP (Fig. 5A) were 
found, but not only when values where aggregated by treatments and locations but also when 
analyzed at the plot level or even among individual trees (Fig. 5A). This result highlights the 
accuracy of CWSI_UAS to monitor water status even at a plant/tree scale. In this sense, 
Gonzalez-Dugo et al. (2019) also presented similar results in almond, suggesting that CWSI 
measured by UAS can be a feasible alternative to monitor water status in almond orchards. The 
weakest correlation was found again with net assimilation rate (An). As mentioned before, this 
can be an effect of water deficit affecting transpiration and leaf moisture without significantly 
impacting photosynthetic potential (Fig. 5B). The correlation with WUEi was also high, but only 
when the data was pooled by treatments and dates, obtaining weak correlations at plot or tree 
level. However, it can be deducted that in those treatments where more pronounced water deficit 
increased CWSI, stomatal closure decreased transpiration without compromising photosynthesis 
triggering a higher WUEi (Fig. 5C).  
It should be noted that CWSI was developed as a thermal based stress indicator in herbaceous 
crops. In this sense, woody crops monitoring by UAS present important challenges (Sirera et al. 
2021 and references therein). Unstable canopy temperature acquisition, low mosaic precision, or 
soil interference on Tc data are issues that need to be assessed. For this, radiometric calibration 
and temperature correction is crucial to improve the accuracy of CWSI measurements. In this 
study, the discrimination of tree crowns from the underlying soil, the radiometric calibration and 
temperature correction has been carefully carried out, reaching high correlation between UAS-
based CWSI with stem water potential.  

CWSI and Growth Varibility Maps 
The CWSI maps, generated from UAS thermal sensor, effectively captured the spatial variability 
in water stress within the orchards as can be observed in Fig. 7. These maps, revealed distinct 
patterns of water stress, aligning closely with the GVM. In Tzn orchard it can be observed how, 
despite the whole orchard was managed in a similar way, lower CWSI values were found in the 
central part of the plot (Fig. 7A), coinciding with the highest values of cumulated transpiration in 
the GVP (Fig. 7B). In Hellín, at the date of the thermal flight, there was higher soil moisture and 
low CWSI values (Fig. 7C) than that observed in Tzn. This is attributed to more recent irrigation 
event in the flight date (Fig. 2B). However, deaspite the lowere range of CWSI values in Hellín, it 
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can be observed that this variability is also aligned with that presented in the GVP variability 
values (Fig. 7D), with the highest CWSI values and the lowest cumulated transpiration values in 
the southeast (values in red) of the plot. The opposite occurs in the northwest (values in blue). In 
Hellín, some values of CWSI were below 0. This was caused by a waterlogging effect in the 
northwest zone. The analysis of these images taken with the drone and the thermal sensor 
allowed to detect this failure. In any case, this part of the plot was not included in the ground-
based measurements so it did not affect the development of correlationes previously mentioned 
in the study. All these results underscore the utility of CWSI maps in identifying areas within 
orchards that experience varying degrees of water stress or irrigation system faliures, finding inner 
variability due to several factors. Such spatial variability under presumably similar management 
condition is critical for precision irrigation management, enabling targeted water application to 
optimize resource use and improve crop yields. 

Figure 7. A) CWSI map of Tarazona almond orchard on August 23, 2023; B) Growth Variability Maps (GVM) of Tarazona plot 
in 2023; C) CWSI map of Hellín almond orchard on August 21, 2023 D) GVM of Hellín plot in 2023; E)Spatial distribution of 
the irirgation treatment assay in Hellín and E) CWSI map within the assay. CWSI was calculated using data obtained from 

the H20T thermal sensor mounted on a DJI Matrice 350 RTK UAS. GVM represent the variability (%) on cumulated 
transpiration at each pixel compared with the average transpiration in the whole plot. Data to create GVM was obtained at 

each location from Sentinel-2 images and reference Eto. 
 

A
) 

B
) 

D
) 

C
) 

E
) 

F) 



Proceedings of the 16th International Conference on Precision Agriculture 
21-24 July, 2024, Manhattan, Kansas, United States  

12 

In fact, CWSI maps were fine enough to detect variability in the different irrigation treatments plots 
in Hellín, even when they did not reach high stress values. In Fig. 7D it can be seen how, although 
no value exceeded the CWSI greater than 0.5, there is a clear trend towards lower CWSI values 
in those plots without deficit (marked in the blue boxes) and higher values in plots with moderate 
deficit (orange boxes) or severe deficit (red box). The findings of this study on CWSI maps are 
consistent with previous research that has utilized CWSI for assessing spatial variability in crop 
water stress. For example, Bellvert et al. (2014) in vineyard or Zhang et al. (2019) in maize 
characterized the spatial variability in water status across using CWSI maps derived from UAS 
thermal imagery. Their results indicated that CWSI maps were effective in assessing spatial water 
stress variability, similar to the outcomes observed in the current study. The application of CWSI 
in almond orchards presented in this study, extends the use of this index beyond other crops, 
showcasing its versatility across different crop types and environmental conditions.  
 

Correlations between VIs and CWSI with ground-based measurements and CWSI_UAS 
The analysis of the correlations obtained between various vegetation indices (VIs) with 
CWSI_UAS and ground-based physiological variables denote a high variability on the accuracy 
of VIs to detect water status and physiological performance on almond orchards (Fig. 8).  

Figure 9. Pearson correlation coefficient heat map matrix of vegetative index, gas-exchange traits and CWSI. Significance 
levels are expressed with asterisks (*, **, *** correspond to p ≤ 0.05, 0.01 and 0.001, respectively). Positive correlations are 

indicated in shades of red, whereas negative correlations are indicated in shades of blue, with the intensity of the color 
indicating the strength of the correlation according to the scale bar at the right. 

SWP shows significant negative correlations with many of the VIs and physiological traits 
analyzed, indicating that as water potential decreases (drier leaves), these traits tend to decrease. 
Some of the VIs that present strong correlations with SWP such as the transformed chlorophyll 
absorption in reflectance Index (TCARI), the Modified chlorophyll absorption in reflectance index 
(MCARI), the multispectral Structure Independent Pigment Index (SIPIm) or the Carotenoid 
Reflectance Index 2 (CRI2) are pigment-related indices. Some of them have been previously 
analyzed in other crops (Gracia-Romero et al. 2019; Katuwal et al. 2023). Despite the statistical 
correlation with water status found here, it seems that this relation is more related to phenological 
changes or senescence across growth cycle evolution than water-related physiological 
performance itself (Bian et al. 2019). Other indices, such as the Normalized Difference Water 
Index (NDWI), presented also strong correlation with SWP and CWSI_UAS as well. This result is 
in concordance with the study conducted by Kapari et al. (2024) denoting its applicability for water 
stress detection.  
The other ground-based physiological variables (i.e. gs, Ci, Emm and An) showed less and 
weaker statistical correlations with VIs than SWP. Again, these variables were statistically 
correlated with pigment-related VIs such as the Clorophyll Carotenoid Index (CCI), the Canopy 
Chlorophyll Content Index (CCCI), the multispectral Plant Senescence Reflectance Index 
(PSRIm), the MERIS Terrestrial Chlorophyll Index (MTCI), the Carotenoid Reflectance Index 2 
(CRI2), and the Anthocyanin Reflectance Index 2 (ARI2).  Based on these results, these pigment 
related indices, especially those that address chlorophyll content were transversal VIs to detect 
variability on the ground-based physiological variables, as found in other studies (Fullana-Pericàs 
et al. 2022; Savchik et al. 2024). These results point these VIs as promising operative variables 
to monitor physiological performance in almond.  However, none of the VIs performed better than 
CWSI_UAS to detect SWP changes (Fig. 8). In this sense, CWSI_UAS remains as a remarkable 
proxy for water status monitoring in almond. These relationships between certain VIs with 
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photosynthetic rates can serve as valuable tools for identifying high-performing areas in the field 
or detecting early signs of stress before they become apparent to the naked eye. However, it 
should be considered that the current study focuses on almond orchards with the same cultivar 
and under similar nutrient management conditions, being water status, the most changing factor 
affecting physiological performance. In this sense, further research is needed in almond orchard 
to provide feasible results on these and other VIs for almond farm management. However, this 
first attempt with the analyzed VIs and CWSI with ground-based physiological measurements, 
reinforce the operability of remote sensing technologies in enhancing water use efficiency in 
almond, particularly critical in water-scarce regions like southeast Spain. 

Conclusion 
The findings of this study illustrate that CWSI, when monitored through both ground-based and 
UAS-based methods, serves as a reliable tool for assessing water status in almond orchards. 
These results align with previous studies, reinforcing the CWSI's sensitivity in detecting water 
stress before it adversely affects photosynthesis, thereby proving its value for operational water 
status assessment. The significant correlations identified between CWSI and VIs monitored via 
UAS with ground-based physiological data underscore the broad applicability of this technology 
in almond orchard management. The use of UAS to derive CWSI highlights its practicality and 
effectiveness for large-scale monitoring, addressing the limitations of labor-intensive and less 
practical ground-based manual measurements. Additionally, integrating VIs, particularly pigment-
related indices such as CCCI, MTCI, ARI2, CRI2, PRI, and PSRIm, with ground-based 
measurements provides a validated approach for precise physiological monitoring of almonds. 
The integration of CWSI maps with growth variability maps confirms that UAS-based thermal 
imaging is a powerful tool for monitoring crop water stress, offering high-resolution spatial 
variability maps crucial for precision agriculture. However, achieving reliable results in thermal 
monitoring, particularly with UAS, necessitates meticulous data pre-treatment and calibration. In 
summary, by understanding the relationships between UAS-based indices and physiological traits 
analyzed in this study, farmers and agronomists can improve decision-making processes related 
to irrigation, fertilization, and overall crop management. 
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