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Abstract.  
The sugarcane production system in Colombia, spanning an area of 241,000 hectares in the 
geographical valley of the Cauca River, is recognized worldwide due to its high productivity, 
adoption of advanced technologies, and sustainable management. The natural soil and climate 
conditions in this region result in significant variability in the chemical and physical soil properties. 
Consequently, determining the soil variability is crucial to achieving its maximum productive 
potential through differentiated sustainable management. This research aimed to identify the 
spatial variability of multiple soil properties thought the development of a method to optimize a 
sampling pattern called OPMSSA (Optimal Pattern of Multiscale Soil Sampling using Simulated 
Annealing). The main objective of this methodology is to generate an accurate map of soil 
sampling points to produce layers that show soil variability. These layers could be used for 
variable-rate fertilization, achieving a significant reduction in sampling point number compared to 
conventional methods. This approach leads to cost reduction, decreased application of chemical 
inputs, and increased efficiency during the sampling process. The OPMSSA method was 
validated with previous data. Subsequently, it was implemented, and evaluated in a survey for 
chemical and physical properties in the central zone of the Providencia Sugar Mill. To validate, 
three sampling patterns (grid, random, and OPMSSA method) were compared in seven blocks 
with soil chemical properties sampling points. The results showed that the sampling pattern 
obtained from the OPMSSA method reduced the number of sampling points by up to 40%, 
compared to the other two evaluated sampling patterns. In conclusion, simulations with the seven 
blocks demonstrated better performance of the OPMSSA method than grid and random sampling 
patterns. This finding was verified using bifactorial analysis of variance with a 95% reliability, 
revealing non-significative differences between the sampling patterns. Consequently, these 
results confirmed that an analysis of multiple soil properties using the same sampling pattern, 
might be optimal for one property but suboptimal for others in terms of spatial variability 
identification. 
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INTRODUCTION 
 
As we know, the productivity of an agricultural crop will depend on several factors: climate, soil, 
management practices, and plant physiology, with soil being one of the most important due to 
changes in its properties by natural and anthropogenic processes (Morell & Hernández, 2008). 
These changes, which are of a spatiotemporal nature, largely explain the variability in crop 
productivity, making its study indispensable. For this reason, precision agriculture emerges as a 
set of technologies and methodologies that allow describing and analyzing the spatial and 
temporal component of this variability, studying the phenomena present in the soil in greater detail 
through tools such as geostatistics (Bongiovanni, Mantovani, Best, & Roel, 2006). 
The determination of soil properties starts with soil sampling in the field, followed by data 
processing, to finally generate spatial variability maps of the soil (SVMS) using geostatistics 
(Sankar, Kumar, & Chattopadhyay, 2018). The most well-known soil sampling patterns (such as 
systematic grid, random, triangular, etc.) are not applicable in soil science, as they assume 
independence between sampling points (Brus, 2018). Consequently, these could generate a 
spatial distribution of sampling points in the field that does not correspond to variability, placing 
many points in areas where variability is low or few where it is high, thus losing important 
characteristics of soil spatial variability (Stumpf et al., 2017). 
To solve this problem, methods such as two-phase sampling have been developed, which 
optimize the sampling pattern by dividing it into two distinct stages: In the first phase, a fraction of 
the total soil samples is taken to identify the spatial behavior of the variables through the 
calculation of the theoretical semivariogram parameters; in the second phase, the data and 
semivariogram obtained from the first phase are used as input variables to a prediction algorithm 
based on heuristic optimization called Spatial Simulated Annealing (SSA); used in various studies 
of soil spatial variability (Van Groenigen, Siderius, & Stein, 1999; Van Groenigen, 2000). 
The SSA algorithm generates additional soil sampling points to those from the initial phase, based 
on the data provided in the first phase, using the semivariogram as an analysis tool and the 
minimization of the Kriging Variance function as an optimization criterion (Van Groenigen, 2000). 
SSA prevents the optimal sampling pattern from converging to a local minimum of the Kriging 
Variance function by generating perturbations (moving the sampling pattern points to determined 
distances) and accepting worse solutions with a range of probability set by the user, thus 
achieving the solution closest to the global optimum (Van Groenigen et al., 1999). 
The advantages of this method are the reduction of SVMS errors and the reduction of the number 
of samples extracted in the field, which lowers the sampling cost and makes it feasible to sample 
soil properties more frequently. Additionally, this method considers some sampling constraints 
such as limiting the number of observations and identifying inaccessible areas, among others 
(Szatmári, László, Takács, Szabó, & Koós, 2018). Furthermore, it allows using data from previous 
spatial variability analyses, which serve as a basis for optimization, without the need for sampling 
in the first phase (Simbahan & Dobermann, 2006). 
Current spatial sampling patterns do not have a distribution that can identify the variability of 
multiple soil properties at the same time, resulting in increased costs, extraction time, and sample 
analysis in the laboratory. Also, SVMS may not present an acceptable error, which would cause 
a series of poor agronomic decisions leading to economic losses (Szatmári et al., 2018). 
The objective of this research was to develop a method to optimize the spatial sampling pattern 
of multiple soil properties in a single sampling campaign. The proposed method used the SSA 
algorithm in conjunction with geostatistical techniques. 
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MATERIALS AND METHODS 

SSA Algorithm Parameters 
The design of the method began by constructing an algorithm based on SSA to optimize sampling 
patterns of multiple variables using the R programming language v.3.6.1 (R Core Team, 2019). 
From the R package spsann, designed by Samuel-Rosa, Brus, & Lark (2017) to optimize sampling 
patterns for a single variable, the function optimMKV was used, which optimizes the sampling 
pattern to obtain spatial interpolations with low errors. The minimization criterion was applied to 
the kriging variance function. This is the code snippet used in the method: 
> optimMKV (points, candi, covars, eqn = z ~ 1, vgm, krige.stat = "mean", ..., schedule = 
scheduleSPSANN (), plotit = FALSE, track = FALSE, boundary, progress = "txt", verbose = 
FALSE)  
> objMKV (points, candi, covars, eqn = z ~ 1, vgm, krige.stat = "mean", ...) 
Where points is a list variable in R that contains the sampled points from the first phase and the 
number of additional points to optimize; candi is a table with the coordinates of candidate locations 
for the perturbations generated in each iteration of the optimization. Covars is a table with 
information on the covariables that influence the spatial variability of the study variable, which is 
optional. The eqn parameter defines the type of kriging; for this work, it was set to 1, representing 
ordinary kriging; vgm is the theoretical semivariogram model of each variable (for R software, it 
must be a variogramModel type variable). Krige.stat represents the function to be minimized, with 
optimMKV having two options: the mean or maximum kriging variance ("mean" - "max."). Plotit is 
optional and is used to visualize the movement of perturbations on a 2D plane. The Boundary 
parameter (polygon that circumscribes the sampling points) can be provided and is recommended 
as it delimits the study area; if not provided by the user, it is estimated from Candi. Finally, 
progress and verbose are optional and are used to observe the progress percentage of the 
algorithm execution. 
Additionally, scheduleSPSANN is a list of 11 control parameters for the SSA algorithm. Below is 
the code and the default values for each parameter: 
> scheduleSPSANN (initial.acceptance = 0.95, initial.temperature = 0.001, temperature.decrease 
= 0.95, chains = 500, chain.length = 1, stopping = 10, x.max, x.min = 0, y.max, y.min = 0, cellsize) 
Initial.acceptance is a value between 0 and 1 that defines the initial acceptance probability, i.e., 
the number of patterns that will be accepted in the first Markov chain.The initial.temperature 
parameter is a numeric value greater than zero that defines the initial t value of the algorithm. A 
low temperature value combined with low initial acceptance selects the best patterns in the 
iterative process of the algorithm (Díaz & Dowsland, 2003). 
Temperature.decrease varies between 0 and 1 and is used as a multiplication factor to decrease 
t in each Markov chain. Chains is the maximum number of perturbations where t remains constant. 
The chain.length is the number of Markov chains. Stopping is the maximum number of iterations 
the algorithm accepts without improving the objective function. 
Finally, the parameters x.max, x.min, y.max, y.min define the minimum and maximum 
perturbation distance added to each point, and cellsize is the horizontal and vertical spacing 
between the candidate locations of candi, with the default value being 0, indicating a finite set of 
candidate locations. It is important that the x, y coordinates are in a flat coordinate system. 

Design of the Multivariate Sampling Pattern Optimization Method with SSA (OPMSSA) 
The designed method consists of a series of steps presented in the flowchart in Figure 7. In the 
initial phase, the structural analysis of soil properties can be obtained in two ways: first, with 
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existing data on the variables in the study area (previous soil samplings, satellite images, previous 
studies by other entities, etc.). The second way is from a sampling pattern designed with 
conventional sampling methods combined with some design criteria mentioned in Figure 7. 
The assignment of points to optimize for each soil property depends on the range calculated in 
the theoretical semivariogram. The soil property with the smallest range is always assigned the 
largest number of points to optimize, and in this way, for the rest of the properties, the smaller the 
range, the fewer points to optimize. 

Multivariate SSA Algorithm 
The proposed algorithm consists of a for loop where each property is optimized separately using 
the optimMKV function from the spsann package of R software. The properties are previously 
classified according to their variability, and depending on this, the number of points to optimize is 
assigned. The property with the smallest range calculated with the semivariogram is optimized 
first, assigning it a high-density number of candidate locations (candi) distributed throughout the 
study area. The resulting optimal pattern of the dominant property is the new candi for the rest of 
the properties. 
At the end of the optimization cycle, the nearest spatial neighbor of the dominant property for 
each optimized point is sought from the rest of the properties, and the X and Y coordinates are 
averaged (using the Fast k-nearest neighbor algorithm). The product is a table with the 
coordinates and properties to be sampled at each point. It also outputs the optimized resulting 
patterns per property and the final optimized pattern on a 2D plane, along with the graphs of the 
objective function behavior during the process. 
 

 
Figure 7. Flowchart of the sampling optimization method using the SSA algorithm. 
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Validation of the OPMSSA Method with Secondary Data 

The validation of the OPMSSA method was conducted using a dataset from Providencia sugar 
mill factory, which includes soil chemical properties determined in 2014, using a 60m-by-60m grid 
sampling. This sampling was taken in the central area of the sugar mill, near the village of Amaime 
(Palmira) and the municipality of Cerrito. The aim of this validation was to reduce the number of 
sampling points using the method while maintaining similar or lower MEVCs compared to those 
obtained from random and grid sampling patterns. pH, organic matter (OM), cation exchange 
capacity (CEC), and apparent electrical conductivity (ECa) were randomly selected for validation. 
The random selection was made to verify that the method works for any soil property. 

The study area for validation covers an area of 282 hectares, which was divided into seven blocks 
(Figure 8). It was ensured that the plots (the minimum agricultural management area for the sugar 
mill (see Figure 8) in each block were contiguous and had an average of 100 sampling points. 
Then, a geostatistical analysis was performed, and each property was interpolated using Ordinary 
Kriging with the sampling points contained in each block. The resulting interpolations were 
established as the "real" surface of the selected soil properties. These served as the basis for 
comparing the three types of sampling patterns: grid, random, and the OPMSSA method. 

For the grid and random patterns, 100 sampling points were selected. The values of each soil 
property at these locations were extracted from the aforementioned "real" surface; with this data, 
the semivariogram analysis and the interpolation process were performed, and their respective 
MEVCs were calculated. Subsequently, the steps described in Figure 7 were followed, where for 
the initial phase of the OPMSSA method, 40 sampling points were randomly selected, and the 
values of these points were extracted from the "real" surface for semivariogram analysis. 
Interactively, the minimum number of samples for each property was found, which optimized with 
the SSA algorithm, gave MEVC values lower or similar to those obtained from the grid and random 
sampling patterns. This process was carried out in each block. 

 
Figure 8. Distribution of the blocks for validation of the OPMSSA method. 
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The geostatistical analysis was performed using an R script designed to select the best-fit 
semivariogram model for each property based on the RMSE. Four candidate semivariogram 
models were chosen, as they are considered the best fit for soil properties according to Lianheng 
et al. (2018b). 
 
ANOVA for Validating the OPMSSA Method 
The experimental design involved a two-factor analysis of variance (ANOVA II) to examine the 
effects of the soil property and sampling pattern. This method proposes dividing subjects into 
homogeneous subgroups or blocks and making comparisons among the blocks. In this study, the 
ANOVA was used to test whether the sampling patterns had an effect on the prediction error of 
the spatial interpolation, while the soil property did not. 
 
Values for the SSA Algorithm for OPMSSA Method Validation 
The parameter values for the SSA algorithm used for validation were selected after a literature 
review and are as follows: 
 
initial.acceptance = 0.5 
initial.temperature = 1000 
temperature.decrease = 0.95 
chains = 500 
chain.length = 1 
stopping = 80 
x.max = 500 
x.min = 0 
y.max = 500 
y.min = 0 
cellsize = 60 
 
Validation of the OPMSSA Method with Field Data 
Following the validation of the OPMSSA method with secondary data, field sampling was 
conducted in the San Jerónimo, El Alizal, Santa Lucía, Samaria, La Esmeralda, Chontaduro, and 
La Inmaculada Concepción estates. These are located in the central area of Providencia sugar 
mill near the Amaime district (Palmira) (Figure 9), between coordinates 3° 36' 12" and 3° 38' 39" 
North latitude and -76° 21' 53" to -76° 16' 26" West longitude, covering an area of approximately 
2327 hectares. This region has a tropical climate with an average annual rainfall of 1080 mm and 
an average annual temperature of 24 °C (IUCN, 2016). 
The soils in the study area exhibit a wide variability of soil consociations, describing a cartographic 
unit dominated by specific physical soil characteristics. This variability includes soil orders such 
as Mollisols, Vertisols, Inceptisols, and Entisols. These soils are rich in organic matter due to their 
location in the warm areas of the Cauca River Valley. The soils have good fertility, high clay 
content, and an abundance of cations and nutrient salts. They exhibit a range of textural phases 
from moderately fine to coarse and have low slopes of less than 3% (CENICAÑA, 2013). 
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First Phase of the OPMSSA Method for Physical Properties 
In the first phase, the content of clay (Ar), silt (L), and sand (A), bulk density (DA), field capacity 
moisture [cc], and permanent wilting point moisture [pmp] were determined. From some of these 
properties, the rapidly available water content (LARA) was calculated for each point. The first 
phase of the OPMSSA method used existing information from a 2017 survey conducted in the 
central area of Providencia sugar mill, consisting of 52 points (Figure 9). The criteria for locating 
these points considered soil consociations, recommendations from the estate managers, and 
specific zones such as areas with high water tables or sandy regions. 
 

 
Figure 9. Estates for Sampling Execution and Initial Phase Points. 

 
Optimized Sampling Pattern with the OPMSSA Method (Second Phase) 
The steps described in Figure 7 were followed, starting with the geostatistical analysis for each 
property using data obtained from the initial sampling pattern (Figure 9). Based on the 
semivariogram analysis, the SSA algorithm was executed, setting the maximum number of points 
to be optimized (30 points for the dominant property) due to cost, time, and operational 
constraints. With the locations of the optimized points determined, field sampling was conducted, 
and laboratory values were determined. These values were then used for semivariogram analysis 
with all points (initial and optimized), interpolation, and calculation of MEVC. 
The parameter values of the SSA algorithm used for optimizing the field sampling pattern of 
physical properties were: 
 
initial.acceptance = 0.5 
initial.temperature = 1000 
temperature.decrease = 0.95 
chains = 500 
chain.length = 2 
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stopping = 80 
x.max = 5000 
x.min = 0 
y.max = 5000 
y.min = 0 
cellsize = 1000 
 
Since x.max, x.min, y.max, y.min, and cellsize values are distances, they should be proportional 
to the study area. In other words, if the area is large, the distances are recommended to be 
greater, and vice versa. Hence the difference in values compared to those selected in the 
validation. 
Laboratory Determination Methods for Physical Properties 
The laboratory methodology followed was that proposed by IGAC (2006). 

RESULTS AND DISCUSSION 
 
Validation of the OPMSSA Method with Secondary Data 
Below are the results obtained from the SSA algorithm implemented in the OPMSSA method 
(times, factors influencing the result, etc.), along with the validation results for Block 1. This block 
is presented as a summary because the results achieved in the other blocks were similar. 
 
Validation of the OPMSSA Method in Block 1 
To validate the OPMSSA method, a random sampling pattern was used as the initial phase, and 
the property values were extracted from the "real" surface. The semivariogram analysis used to 
classify the properties from the smallest to the largest range is presented in Table 1. For Block 1, 
the dominant property was the CIC, which has the smallest range of 314.36 meters. 

Table 1. Parameters of the theoretical semivariogram of the initial phase for the OPMSSA method 

Property  Sill  Nugget  Range  Model  

pH  0.04  0.00  857.96  Spherical  

OM  0.76  0.00  1123.95  Gaussian  

CIC  4.61  0.06  314.36  Gaussian 

ECa  0.04  0.00  7538.74  Spherical 
 
Subsequently, the SSA algorithm was executed with the proposed parameters from the section 
"Values to use in the SSA algorithm for the validation of the OPMSSA method" and the 
semivariogram parameters obtained in Table 1, yielding the following results. 
 
Comparison of MEVCs in interpolations for the three sampling patterns and variability 
maps 
After optimizing the patterns for each property with the SSA algorithm and extracting the values 
from the "real" surface for each property for the grid and random sampling patterns, the 
semivariogram analysis was performed, and the parameters presented in Table 2 were obtained. 
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Where the properties in the three patterns presented values of 1.00 in the C/(C0+C) ratio, 
indicating a strong spatial dependence (Cambardella et al., 2010). There is also a similarity in the 
semivariogram parameters between the method's patterns and the grid pattern, with the same 
model for each property. 
 

      Table 2. Parameters of the theoretical semivariogram by sampling pattern for each soil property                                            
(after optimization with SSA). 

Sampling pattern Property Sill Nugget Range RMSE Model C/(C0+C) 
 

OPMSSA Method 

pH 0.03 0.00 983.53 0.00 Spherical 1.00 
OM 0.29 0.00 621.00 0.02 Gaussian 1.00 
CIC 5.29 0.00 283.27 0.77 Gaussian 1.00 
ECa 0.04 0.00 8145.84 0.00 Spherical 1.00 

 

Random 

pH 0.39 0.00 8976.79 0.00 Spherical 1.00 
OM 0.13 0.00 389.85 0.02 Gaussian 0.99 
CIC 4.42 0.00 640.62 0.99 Gaussian 1.00 
ECa 0.01 0.00 763.04 0.00 Spherical 0.99 

 

Grid 

pH 0.84 0.00 22907.37 0.00 Spherical 1.00 
OM 0.22 0.00 493.32 0.02 Gaussian 0.99 
CIC 5.00 0.03 269.90 0.69 Gaussian 0.99 
ECa 0.04 0.00 6762.99 0.00 Spherical 1.00 

 
Table 3 shows the values of the cross-validation evaluation measures (MEVC) for Block 1. It was 
observed that pH and ECa had the same RMSE and MAE for each sampling pattern, with the 
difference that the OPMSSA method reduced the number of sampling points by 44 and 52 
compared to the grid and random patterns. OM and CEC had insignificant differences between 
patterns, with a reduction of 50 and 40 sampling points, respectively. The explained variability for 
all properties ranged between 50% and 75% for all sampling patterns. These RMSEr values 
represent the explained variability (Arrouays et al., 2014). 
An inverse relationship between the RMSEr value and the R value is also observed (Table 3). For 
example, the ECa property with an average RMSEr of 84% for each sampling pattern had low R 
values, averaging 0.50. In contrast, the pH property, which had low RMSEr values, obtained the 
highest R (averaging 0.75) among the three patterns. 
 

Table 3. Cross-validation results and statistical summary of the interpolations. 

 
Sampling pattern Property RMSE RMSEr MAE R Maximum Minimum Mean STD No. 

Points* 
 

OPMSSA Method 

pH 0.17 65.15 0.13 0.74 7.53 6.98 7.25 0.14 56 
OM 0.44 73.95 0.35 0.68 3.52 2.07 2.51 0.29 50 
CIC 3.91 78.89 2.99 0.64 25.41 16.99 20.93 1.85 60 
ECa 0.12 83.90 0.07 0.51 0.48 0.29 0.38 0.05 48 

 

Random 

pH 0.17 66.69 0.13 0.75 7.54 6.96 7.25 0.15 100 
OM 0.46 76.65 0.35 0.67 3.38 2.07 2.49 0.28 100 
CIC 4.00 80.52 2.98 0.64 25.27 17.23 20.88 1.80 100 
ECa 0.12 85.24 0.07 0.54 0.50 0.28 0.38 0.05 100 

 

Grid 

pH 0.17 65.76 0.13 0.76 7.52 6.96 7.25 0.15 100 
OM 0.44 73.88 0.34 0.70 3.54 2.07 2.49 0.30 100 
CIC 3.95 79.41 2.95 0.66 25.42 17.03 20.91 1.85 100 
ECa 0.12 84.38 0.07 0.56 0.50 0.28 0.38 0.05 100 

*Number of Sampling Points Used to Interpolate the Analyzed Soil Properties 

 
Table 4 contains the results obtained from the two-factor analysis of variance. The factors: the 
pattern and the property were significant independently, while the interaction between pattern and 
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property had no effect on the response variable (in this case, the MEVC). For the purposes of this 
thesis, there were no significant differences between the evaluated patterns, meaning that the 
same quality of MVES is obtained whether sampling with a grid or random pattern of 100 points 
or with the OPMSSA method, which reduced the number of these 100 sampling points by an 
average of 40%. 

Table 4. Results of the two-way analysis of variance (evaluation of assumptions). 

 
 Df Sum Sq Mean Sq F Value Pr (>F) 

Pattern 2 925 462.70 3.26 0.04* 
Property 3 2802 933.80 6.57 0.00** 

Pattern : Property 6 106 17.70 0.12 0.99 
Residuals 72 10230 142.10   

*Significant values p < .05; **Very significant values p < .01; **Highly significant values p < .001 

 
General Results Found from the OPMSSA Method Validation with the Seven Blocks 
In section "Validation of the OPMSSA Method with Secondary Data", only the results obtained 
from block 1 were shown, because the results found in the remaining six blocks were repetitive. 
This was verified through bifactorial analysis of variance (described in section ANOVA for 
Validating the OPMSSA Method) executed to compare the three evaluated patterns, based on 
the MEVC obtained from the interpolations corresponding to these patterns. The results indicated 
that there were no significant differences between patterns with a reliability level of 95%. On the 
other hand, significant differences were found between properties because they present different 
numerical scales, but this does not affect the error associated with interpolation. 
Table 5 presents the percentages of reduction in sampling points generated by the OPMSSA 
method, where a reduction between 40% and 56% is observed compared to grid and random 
sampling patterns. This represents progress for agriculture in terms of periodic soil property 
analysis, within a framework constrained by budget and MVES precision. For example, in the 
case of Providencia sugar mill, which sampled 3770 points on a grid for chemical property 
analysis, with a cost of USD$ 79,776. With the implementation of the SSA method, savings of 
USD$ 31,914 could be generated for the second round of chemical analysis, not counting the 
precision that could be achieved in fertilization recommendations. 

Table 5. Percentage reductions in sampling points with the OPMSSA                                                                                 
method pattern versus random and grid patterns. 

 

Property Block 1 Block 2 Block 3 Block 4 Block 5 Block 6 Block 7 

pH 44% 50% 55% 51% 40% 40% 40% 

OM 50% 54% 40% 40% 43% 46% 47% 

ECa 52% 46% 43% 54% 52% 52% 47% 

CIC 40% 40% 54% 50% 45% 46% 56% 

Conclusion or Summary 
It has been demonstrated that the proposed OPMSSA method in this undergraduate thesis 
document merges optimized soil property sampling patterns into one, allowing for obtaining MVES 
with low errors for all properties. The total number of points to sample from the resulting pattern 
is not equal for all properties, which reduces the number of points to sample by up to 50%. 
Ultimately, this translates into cost savings in sampling, both in field surveying and in the time and 
reagents used in the laboratory. 
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Simulations conducted with the seven blocks showed better performance of the OPMSSA method 
compared to grid and random sampling patterns. This was verified with a bifactorial analysis of 
variance that yielded a reliability of 95%, with minor differences between sampling patterns. As a 
result of these findings, it was confirmed that when conducting an analysis of multiple properties 
with the same sampling pattern, it may be optimal for one property but suboptimal for others, in 
terms of identifying spatial variability. 
The application of the OPMSSA method in real sampling yielded results consistent with reality, 
with relatively low MEVC compared to other similar studies and correlations of the analyzed 
physical properties according to theory. 
It was found that the parameters of the semivariogram influence the optimization of the pattern 
with the SSA algorithm. Additionally, the SSA algorithm can be designed with various objective 
functions according to the sampling needs. In conclusion, the OPMSSA method can be used by 
small, medium, and large-scale farmers with or without existing information on variability. 
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