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Abstract. 
We present rmaps, an R package that integrates soil and crop yield spatial variability using 
geostatistical methods and one-hidden-layer perceptron (OHLP) modeling, to identify how input 
parameters influence crop yield and delimit homogenous zones. rmaps were tested using three 
synthetic datasets and one sugarcane dataset. The synthetic datasets consisted of 21 
randomized, linear, and random-linear parameters with 2000 samples, 20 used as inputs and the 
remaining one as the output parameter. The sugarcane dataset consisted of 54 soil samples 
where physical and chemical properties were measured in the laboratory, drainage was used as 
a binary parameter, and yield data were collected from 2015–2016. The results of the synthetic 
dataset showed that the OHLP, implemented in rmaps, could identify the linear relationship 
between the input and output parameters when these parameters are linearly related (𝑅! =
0.912, 𝑝 < 0.001). In contrast, rmaps could not identify any relationships among parameters for 
the randomized dataset (𝑅! = 0.001, 𝑝 > 0.05). Regarding the sugarcane dataset, drainage was 
the parameter that mainly explained changes in sugarcane yield with a relative importance, 
compared to the remaining input parameter of 26.722% (𝑝 < 0.05). The relevance metric map 
showed homogeneous zones where drainage and soil properties can be managed differentially 
to increase sugarcane yield. We conclude that rmaps permit the identification of relevant input 
parameters for improving crop yields and displaying them in homogeneous management zones. 
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Introduction 
The use of management zones (MZs) is one of the most studied methods used in precision 
agriculture (PA) to optimize crop yield and address soil spatial variability. These are defined as 
subareas within a field with similar soil, plant, topographic, and climate characteristics in which 
PA practices are carried out in an uninform manner (Guastaferro et al., 2010; Nawar et al., 2017). 
MZs vary in number per field, shape, and extent, from field to field, and throughout time. An MZ 
can cover a few square meters to several hectares. Fertilization, irrigation, seeding, and weed 
control practices are carried out by zone. Although ancient farmers fractioned fields according to 
their fertility, this method was developed from the opportunity to use geospatial technology to the 
traditional uniform management applied in agriculture before the PA (Robert, 2002). 
 
Considering that soil, plants, topography, and climate interact in an unknown manner to return a 
crop yield, parameters from these factors are usually measured and estimated to delimit MZs. 
Some approaches are focused on soil properties, others are focused on plant parameters, with 
yield being the primary parameter, and the remaining approaches are focused on a combination 
of these two parameters (Ortega & Santibáñez, 2007). These parameters, measured with sensors 
or manually in the field, processed in the laboratory and spatialized with geostatistics, are sorted 
in georeferenced layers and incorporated into empirical or stochastic models. Among the models 
reported to delineate MZs are cluster (k and c-means), Rasch, coefficient of variation, and 
principal component models (Gavioli et al., 2019). The collection, filtering, selection, grouping, 
and mapping of MZs are required (Santos & Saraiva, 2015). 
 
Because of its ability to provide reasonable responses to highly complex problems, artificial 
intelligence is broadly used in PAs (Shaikh et al., 2022). Regarding MZs, Von Hebel et al. (2021) 
used the ML technique fuzzy c-means to delineate two MZs in six potato fields using the NDVI 
and apparent electrical conductivity. The authors found that the yield did not significantly differ 
between the two zones. Gallardo-Romero et al. (2023) found that the machine learning (ML) 
algorithms used to predict three MZs in corn were accurate. Gallardo-Romero et al. (2023) 
arbitrarily defined the number of MZs based on the high, medium, and low yield values. Ohana-
Levi et al. (2019) analyzed the influence of soil, plant, and topographic parameters on crop yield 
to define MZs. Using the weights of each input parameter, Ohana-Levi et al. (2019) delineated 
four MZs that are not associated with an agronomical task in the field. (Bai et al., 2023) used a 
multiscale segmentation method to delineate salinity management zones. This study also lacks 
specific recommendations for salinity management for each delimited zone. 
 
According to the above studies, we determined that MZs do not integrate the effects of soil, 
topography, and other influential factors on crop yield; the number of MZs, usually three, is defined 
by the authors; the most commonly used methods for delineating MZs are traditional (k-means) 
and ML clustering (fuzzy c-means); and each MZ zone in the map is represented by a single 
parameter, usually yield, vegetation index, or nitrogen, hindering several tasks at the same time. 
Erazo et al. (2015) proposed a method to identify limiting crop factors using the internal structure 
of a trained artificial neural network (ANN) and spatialized this result through relevance metric 
maps. These maps show homogeneous areas that can be analogized to MZs and fill the 
mentioned gaps. This study develops the methodological framework presented by Erazo et al. 
(2015) in a set of R functions compiled in the R package rmaps. 
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Methods and data 

Conceptualization and methodological framework of rmaps 
Crop yield can be seen as the result of interactions among soil, plants, topography, agronomic 
tasks, and climate factors. Each of these factors is composed of parameters such as bulk density, 
soil organic matter, NDVI, slope, or fertilization, which influence the yield to a variable degree. In 
an agricultural field, the climate is relatively uniform, and several agronomic tasks are assumed 
to be homogeneous, by which soil, plant, and topographic parameters are spatially variable. 
Information and communication technologies and spatial soil sampling permit accounting with 
digital and successive layers composed of pixels with values of these parameters. In a particular 
pixel, crop yield is a function dependent on soil, plant, and topographic parameters. 
 
Relevance Metric Maps (rmaps) is an R package for analyzing soil, topography, climate, plant, 
and crop yield spatial variability and delimitating homogenous zones. rmaps are based on the 
relevance metric methods reported in Satizábal & Pérez-Uribe (2007), and the spatialization of 
these methods is based on the use of training and testing datasets of ANNs reported by Zurada 
et al. (1997). rmaps perform four main processes: geostatistical analysis, multilayer perceptron 
training, relevance metric analysis, and relevance metric mapping. Geostatistical analysis is 
composed of eight functions, and the other processes implement one function (Table 1). 
Geostatistical functions can be run sequentially through function computemaps or individually. 
The R maps were built in R (version 4.4.0) via the sf, gstat, and neuralnet packages. 
 

Table 1. Description of the functions of the rmaps package 
Process Function Description 

Geostatistics 

checkdbase Checks structure of georeferenced database 
transcoord Transforms geographical or projected coordinates 
duplicates Removes duplicates points from georeferenced database 

outliers Identifies and remove spatial outliers from georeferenced database 
statistic Computes descriptive statistics 

tr Transforms and back-transform numerical parameters 
experimental Computes experimental semivariogram 

theoretical Computes theoretical best-adjusted model of semivariogram 
Interpolate Interpolates spatial data using Kriging or IDW methods 

Multilayer perceptron 
training 

architecture Trains and finds the best architecture of artificial neural network 

Relevance metric 
analysis 

relevancemetric Computes relevance metric based on artificial neural network 
architecture 

Relevance metric maps relevancemaps Computes relevance metrics maps 

 
From georeferenced data with soil, plant, management, climate, and crop yield parameters, as 
shown in Fig. 1, rmaps transforms geographic to projected coordinates; identifies spatial duplicate 
and outlier samples; computes statistical descriptive parameters; identifies and removes (when 
applicable) first- and second-order spatial trends; models the spatial correlation structure 
(variogram); and interpolates and performs cross-validation. rmaps trains a one-hidden-layer 
perceptron (OHLP) and selects the number of hidden neurons with the lowest training error on 
the dataset resulting from spatializing with geostatistical input and output parameters. Then, 
perturbance methods applied to the trained OHLP weights and associated with interpolated pixels 
produce relevance metric maps with positive and negative impacts of the input parameters on the 
crop yield. These relevance metric maps, homologated with homogeneous management zones, 
contain the spatial distribution of the most influential input parameters on crop yield. 
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Fig 1. Methodological framework of rmaps. 

 
The geostatistical framework of the rmaps is described in Bivand et al. (2008). The ANN used for 
rmaps a is a feedforward multilayer perceptron with a backpropagation training algorithm available 
in the neuralnet R package through the function neuralnet (Fritsch et al., 2019). Although rmaps 
is designed to train and test multilayer perceptron nets, in this study, an OHLP was implemented 
because relevance metric methods apply for a one-hidden-layer perceptron. Among the 
limitations of rmaps are that their implementation depends on georeferenced samples in the field, 
which impedes the direct addition of a raster layer to remote sensing products. To simultaneously 
perform geostatistical analysis for several parameters, these parameters must be sampled in a 
unique spatial sample grid. rmaps are focused on analyzing the spatial variability of crop factors 
per crop cycle, i.e., they do not include a spatiotemporal analysis of the crop. Moreover, the use 
of the OHLP for MZ computation restricts the use of more hidden layers, weakening the model 
accuracy in some cases. 
 

Data 
Synthetic datasets 

Synthetic datasets were created to verify the robustness of the architecture and relevancemetric 
rmaps functions for identifying correlations between inputs and output parameters. We expected 
to find a weak correlation between the inputs and output parameters for the random dataset. For 
linear and linear-random relationships, a strong correlation is expected to be found with all and 
with one input parameter, respectively. These datasets were built in R with 21 parameters and 
2000 samples each, of which 20 parameters corresponded to inputs and the remaining parameter 
corresponded to the output parameter. 
 
Samples for the 20 input parameters for all datasets and the output parameter of the random 
dataset were randomly extracted from the uniform distribution varying between -1 and 1. The 
output samples of the linear dataset resulted from the sum of each of the input samples plus a 
random value from the uniform distribution between –1 and 1. The output parameter for the linear-
random dataset corresponded to the 20th parameter multiplied by 2. Therefore, the number of 
input parameter samples for all datasets varied between –1 and 1, the number of output samples 
for the linear dataset varied between -9 and 9, and the number of output samples for the linear-
random dataset varied between –2 and 2. 
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Sugarcane dataset 

This consisted of 54 soil samples spatially distributed across 100 ha taken at the sugarcane Farm 
Churimal (Valle del Cauca, Colombia) in 2019. Three soil physical and nine chemical properties 
were measured in the laboratory as follows. The percentages of sand, silt, and clay, pH, 
percentage of organic matter (OM), phosphorus (P, meq 100 g–1), calcium (Ca, cmol kg–1), 
magnesium (Mg, cmol kg–1), potassium (K, cmol kg–1), cation exchange capacity (CEC, cmol kg–

1), ratio of calcium magnesium (Ca/Mg), and ratio of calcium plus magnesium to potassium 
[(Ca+Mg)/K] were determined. The presence or absence of drainage technology was also 
recorded in the plots as an input parameter, expressed in binary numbers (0 for absence and 1 
for presence of drainage). The sugarcane yield during the 2015-2016 season was recorded with 
a yield monitor in units of t ha–1. 
 

rmaps testing 
The function architecture trains an OHLP and selects the optimum number of neurons in the 
hidden layer. This function was tested by training 20 OHLP architectures and selecting the one 
with the lowest root mean square error (RMSE). The architectures consisted of 1 to 20 neurons 
in the hidden layer. Each architecture was trained 50 times, for a total of 1000 OHLPs trained per 
dataset. The synthetic datasets used to train the OHLPs were split 65% for training and 35% for 
testing. The first 20 columns and the last column were used as the inputs and outputs of the OHLP 
model, respectively. In the training and testing stages, the RMSE was computed, taking the 
observed data as the output parameter from the dataset and the simulated data as the parameter 
outputted from the trained OHLP. In addition to the RMSE, the coefficient of determination (R2) 
was computed for testing. 
 
Function computemaps were used to perform geostatistical analysis of spatial soil sampling and 
yield data for sugarcane crops in the Churimal Farm. Geostatistical analysis revealed spatial 
outliers, computed descriptive statistics, experimental and theoretical semivariograms, and 
interpolation with kriging or inverse distance weighting. The RMSE, mean error (ME), mean 
absolute error (MAE), standardized RMSE (RMNSE), normalized RMSE (RMSEr), and coefficient 
of correlation (r) were computed for cross-validation (Hengl, 2009). Once spatialized, OHLPs with 
1 to 13 hidden neurons were trained and tested 100 times. The best OHLP architecture had the 
lowest RMSE and the highest R2. The function relevance metric was used to compute the relative 
importance of each input parameter to the crop yield, and the Wilcoxon test was used to determine 
whether the input parameters significantly differed from the remaining parameters. The relevance 
metric results were spatialized through functional relevance maps to determine the effects of 
positive impact parameters on yield and to delimit homogeneous management zones. All 
computations and figures were coded in R. All values reported in intervals (± symbols) in the 
results refer to the average and uncertainty, computed with the mean and standard deviation. 
 

Results and discussion 

rmaps testing with synthetic datasets 
The output parameter values for the random, linear, and linear-random datasets varied from –
0.999 to 0.999, –8.664 to 8.955, and –1.999 and 1.999, respectively, with average values of 0.003, 
–0.065, and –0.037, respectively. The Kolmogorov‒Smirnov test for each sample revealed that 
random and linear random data were obtained from a uniform distribution, and linear data were 
obtained from a normal distribution. Regarding the distribution of input data, ANNs have been 
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demonstrated to accurately predict a variety of data distributions, noise, nonlinear problems, and 
learning from the probabilistic distribution of input data (Yuan et al., 2020). 
 
The function architecture trained 1000 OHLP with random, linear, and linear-random datasets in 
0.57, 0.12, and 0.12 h, respectively. The processing time of OHLPs depends on the difficulty of 
finding relationships between inputs and output parameters, as discussed by Shamir (2016). The 
architectures with the lowest RMSEs for the random, linear, and linear-random datasets were 1, 
11, and 3 neurons in the hidden layer, respectively, with average RMSEs of 0.582 ± 0.003, 0.918 
± 0.141, and 0.127 ± 0.056, respectively. The RMSE as a function of the number of neurons in 
the hidden layer varied differently according to the dataset. For the random dataset, more neurons 
had a higher RMSE; for the linear datasets, more neurons had a lower RMSE of up to 11 neurons, 
from which the RMSE increased slightly; and for the linear-random datasets, more neurons had 
a lower RMSE of up to 3 neurons, from which the RMSE increased to 12 neurons and then 
remained relatively constant. Similar to that reported by D’souza et al. (2020), the OHLP 
architecture selected corresponds to an optimization process where the OHLP prediction 
accuracy can be improved or the processing time, which maintains the accuracy, can be reduced. 
 

 
Fig 2. Performance of one-hidden layer perceptron testing and relevance metric analysis of inputs on output parameters 

with random (a, d), linear (b, e), and linear-random (c, f) datasets. 
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The testing and relevance metric analysis of the trained OHLPs for the three datasets are shown 
in Fig. 2. OHLP poorly predicted the output parameter in the random dataset, which was expected 
because of the null relationship between the inputs and the output parameters (Fig. 2a). This is 
the result of the low relative importance of inputs to the output in the random dataset (Fig. 2d). 
The accuracy and relative importance of inputs on output increased significantly in linear and 
linear-random datasets, where input parameters were strongly correlated with the output (Figs. 
2b, e, c, and f). In the linear dataset, an R2 of 0.912 and a relative importance of 0.120 indicate a 
strong correlation between the inputs and output (Figs. 2b and 2e). Because the output is the sum 
of all inputs, the relative importance was equally distributed among all inputs with the same 
percentage (Fig. 2e). In the linear-random dataset, the strong correlation between the inputs and 
the output (Fig. 2 c) is due to the output being a linear function of parameter 20 (P20), which was 
significantly different from the others according to the Wilcoxon test (Fig. 2f). The remaining 
parameters acted as noise in the dataset (Fig. 2f). 
 
Although the above-described ANN capabilities are fully documented (Salah & Hannan, 2020), 
the results of the tested rmaps functions architecture and relevancemetric suggest that these 
were correctly parameterized, and internal processes such as the transformation and back-
transformation of parameters between 0 and 1 (function tr), dataset splitting, the selection of the 
OHLP architecture, and relevance metric methods were properly coded. Regarding relevance 
metric methods, recent studies have reported how to extract information from the internal 
structure of multilayer neural networks (Jeczmionek & Kowalski, 2022), suggesting an opportunity 
to improve rmaps. 
 

RMpas testing with the sugarcane dataset 
Function computemaps can be used to geostatiscally analyze sugarcane dataset parameters. 
The function outliers removed 10% of the spatial outliers using the method described in Lu et al. 
(2003). The function statistics computed descriptive statistics for the parameters. The sugarcane 
yield in the Churimal for 2015-2016 varied between 105.25 and 120.38 t ha–1, with an average of 
112.97 t ha–1, and followed a normal distribution. The circular and spherical semivariograms, fitted 
with theoretical functions, were better adjusted to the experimental semivariance for 11 of the 13 
parameters. The ratio of nugget to total semivariance for pH was 0.865, suggesting weak spatial 
dependence, and the remaining parameter was lower than 0.272, indicating strong spatial 
dependence (Cambardella et al., 1994). Function computemaps were parameterized to generate 
spatially coincident maps of inputs and output parameters with a pixel size of 20 × 20 m. 
 
Cross-validation of the interpolated parameters, computed through function interpolation, 
indicates a high correspondence between the interpolated and observed data for sand, silt, clay, 
OM, P, Ca, Mg, CEC, and Ca/Mg (Table 2). This contrasts with the findings for pH, K, (Ca+Mg/K), 
and yield, where the interpolation method weakly predicts the observed data in the field (Table 
2). The spatial variability map shows that the yield was lower than 110 t ha–1 in the upper central 
part and greater than 115 t ha–1 from the central part downward. Although several factors explain 
the low interpolation accuracy in the context of soil and crop spatial variability (Lin et al., 2005; 
Peukert et al., 2012), we attribute weak interpolation predictions to the low number of spatial 
points sampled. 
 

Table 2. Interpolation performance for the input and output parameters 
Parameter Method Mean RMSE ME MAE RMNSE RMSEr r 

Sand Kriging 21.00 11.45 –0.37 8.97 0.17 72.52 0.69 
Silt Kriging 27.02 4.31 0.13 3.46 0.31 67.98 0.73 

Clay Kriging 53.94 11.22 0.35 9.09 0.09 69.88 0.71 
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Parameter Method Mean RMSE ME MAE RMNSE RMSEr r 
pH IDW 6.56 0.34 –0.01 0.28 - 97.02 0.20 
OM Kriging 2.36 0.46 –0.01 0.37 2.32 73.05 0.68 
P Kriging 16.35 6.16 –0.39 5.08 0.15 74.76 0.66 

Ca Kriging 13.09 2.28 0.08 1.76 0.57 70.54 0.71 
Mg Kriging 11.40 2.31 0.06 1.89 0.40 54.10 0.84 
K Kriging 0.48 0.12 0.00 0.09 8.16 92.37 0.36 

CEC Kriging 25.68 3.85 0.24 3.19 0.20 53.33 0.84 
Ca/Mg Kriging 1.28 0.18 –0.01 0.15 4.18 53.05 0.85 

(Ca+Mg)/K Kriging 55.12 13.60 –0.70 11.35 0.07 84.82 0.52 
Yield Kriging 112.97 3.11 –0.08 2.57 0.29 89.65 0.42 

 
The OHLP training results indicate that the architecture with 13 neurons in the hidden layer 
predicted the lowest RMSE (0.853 ± 0.108 t ha–1) and highest R2 (0.853 ± 0.038) (Fig. 3a). The 
RMSE as a function of the number of neurons suggests that the greater the number of neural 
processing units is, the lower the error prediction, similar to that found by Çolak (2021). Relevance 
metric analysis of the sugarcane dataset indicated that drainage, silt, and sand had a strong 
influence on yield during the 2015-2016 crop season, with relative importance values of 26.722 
(𝑝	 < 	0.05), 8.220 (𝑝	 < 	0.05), and 7.754%, respectively (Fig. 3b). This result agrees with that of 
Deng & Bailey (2020), who found that simulated drainage practices led to crop benefits. 
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Fig 3. Performance of one-hidden layer perceptron training (a), relevance metric analysis (b) of inputs on output 
parameters and homogeneous management zones delimited with the sugarcane dataset (c). 

 
The functional relevance maps were spatially distributed for the relevance metric analysis on a 
map with four zones (Fig. 3c). Silt (47.866% of the area), drainage (29.703%), CEC (7.853%), 
and OM (7.750%) occupied 97.172% of the area of the Churimal Farm. Silt and drainage were 
more spatially continuous than OM and CEC were (Fig. 3c). By extrapolating to the spatial context 
the interpretation of relevance metric methods (Satizábal & Pérez-Uribe, 2007), we affirm that 
improving drainage, increasing silt (which is complex but can be interpreted as balancing the other 
soil texture fractions), CEC, and OM in the zones shown in Fig. 3c could increase sugarcane 
yield. 
 
Clustering is the method most commonly used in studies to delimit MZs (Gavioli et al., 2019). MZs 
delimited by clustering lack physical interpretation. We present a disruptive way to compute and 
interpret homogeneous management zones in precision agriculture because management zones 
spatialized with relevance metric methods are associated with input parameters that influence 
crop yield. The agronomic recommendations for the findings of our study are as follows: for 
drainage MZs, farmers could install drainage pipes and increase the maintenance of open 
channels, pumping, and land levelling (Castellano et al., 2019). For OM and CEC MZs, farmers 
can fertilize sugarcane crops with organic fertilizers, mulch, and other organic amendments 
without tillage (Chenu et al., 2019). For the silt MZ, farmers could add silt-rich stones to the soil 
to modify the soil texture (Zhang et al., 2020). 
 

Conclusions 
rmaps use the influence of input factors on yield crops to delimit homogeneous management 
zones in precision agriculture. Specific agronomical tasks can be recommended based on the 
use of rmaps to delimit homogeneous management zones, generating a potential improvement 
in yield for the following seasons. 
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