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Abstract  
Site-specific and data-driven decision support systems in agriculture are evolving fast with the 
rapid advancements in cutting-edge technologies such as Agricultural Artificial Intelligence 
(AgAI), machine learning models (ML) and big data integration. Data driven decision support 
systems have the potential to revolutionize various aspects of farming, from crop monitoring and 
precision management decisions to the way growers interact with complex technologies. The 
AgAI-based decision support systems excel at real-time analysis of large datasets, granting 
farmers the ability to make informed decisions based on accurate and up-to-date information. 
However, the development of reliable AgAI requires more than just these technologies in 
isolation. To effectively harness their potential, derive maximum value and promote adoption, a 
robust framework should be in place to enable these technologies. This framework should 
encompass several fundamental pillars, including a deep understanding of growers' cropping 
systems and challenges, expertise in environmental and data sciences, robust agronomic 
algorithms, a reliable and unified data infrastructure, and an orchestrating system enabling 
seamless integration of data, algorithms, and agricultural technologies. This approach has been 
exemplified through two data-driven support systems: a remote sensing-based model for in-field 
detection of nematode damage and a product and site-specific seeding placement and seed 
rate decision support system. The Computational Agronomy Team at Syngenta has 
implemented this framework and will emphasize the learning outcomes and best practices.  
Through our efforts, we aim to contribute to the advancement of scalable data-driven solutions 
for growers. 
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Background 
The seamless integration of various agricultural technologies is essential to effectively tackle the 
diverse and complex challenges encountered by growers in practical farming scenarios. The 
evolution of site-specific, data-driven decision support systems in agriculture is rapidly 
progressing alongside advancements in cutting-edge technologies like Agricultural Artificial 
Intelligence (AgAI), machine learning models (ML), and the integration of big data (Junior et al., 
2024). These systems hold the potential to revolutionize multiple facets of farming, ranging from 
crop monitoring and precise management decisions to transforming the way growers engage with 
sophisticated technologies (Javaid et al., 2022; Sharma et al., 2022) 
Nevertheless, to effectively leverage technology potential, extract maximum value, and 
encourage widespread adoption, a robust framework should be in place. This framework should 
encompass several fundamental pillars, including a deep understanding of growers' cropping 
systems and challenges, expertise in environmental and data sciences, robust agronomic 
algorithms, a reliable and unified data infrastructure, and an orchestrating system enabling 
seamless integration of data, algorithms, and agricultural technologies. By incorporating these 
elements, this framework empowers the comprehensive resolution of complex agricultural 
challenges. 
Agronomic models and big data are integrated in Cropwise® digital tools to offer growers 
comprehensive solutions. Growers require precise information to enhance yields, streamline 
operations, and efficiently manage resources. Effective decision-making in agriculture 
necessitates a blend of knowledge, proficiency, and the optimal utilization of available resources 
and technology. This paper showcases two data-driven solutions within the Cropwise® digital 
environment to demonstrate the application of the proposed framework. The first solution (Precise 
Seed and Nutrient Placement) delineates productive environments at the field scale by merging 
locally calibrated crop models with climate, soil, and growers' management data. This approach 
is agreed to variations in climate, soil, and essential management practices, allowing tailored 
agronomic solutions for specific production conditions. To ensure accuracy, automation, and 
reliability in delivering productivity zones for variable rate application, we integrate data layers and 
algorithms guided by agronomic principles. Furthermore, we devise plant density 
recommendations tailored to specific hybrids to maximize productivity at both the field and 
subfield level. In an additional step, nutrient recommendation and other related management 
decisions could be implemented.  
The second solution (Nema Digital) focuses on detecting nematode damage. This model relies 
on assessing anomalies occurring on the soybean canopy (visible damage). By utilizing historical 
time series of satellite images, the model filters out field events or anomalies unrelated to 
nematodes and highlights sites where there is a high likelihood that nematodes are causing stress 
on the canopy (Santos et al., 2022). Initially the model was developed for Brazil, in which soybean 
contributes to approximately 35% of the global soybean production, the model addresses the 
significant issue of plant-parasitic nematodes, which results in estimated annual losses of over 
USD 5.4 billion in the country. In highly infested areas, yield losses can reach up to 30% (Lima et 
al., 2017; Allen et al., 2017). The threat from nematodes has been largely imperceptible and 
inadequately understood due to the abundant presence of nematodes, non-specific symptoms, 
and the limited feasibility of laboratory analyses on soil samples (Blevins et al., 1995; Franchini 
et al., 2018; Martins et al., 2017). Consequently, there is a pressing need for a large-scale solution 
that can offer field-level insights into nematode damage, aiding growers and agronomists in 
prioritizing fields and selecting optimal countermeasures. In response to this challenge, we have 
developed a large-scale solution that can assist farmers in comprehending the scope of the 
nematode problem in their fields. 
The data-driven decision systems elucidated in this work represent a sophisticated integration of 
data, data infrastructure, agronomic models, and grower insights, yet the resulting solution is 
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simple and readily accessible to growers. This accessibility underscores the transformative 
potential of data-driven solutions, which will play an increasingly pivotal role in shaping the future 
of agriculture. Looking ahead, the trajectory of these solutions is undeniably promising, with robust 
AgAI expected to be a defining force. AgAI holds the key to unlocking unprecedented levels of 
precision, efficiency, and insight in agricultural decision-making, ultimately empowering growers 
with advanced tools and capabilities to navigate the complexities of modern farming (Akkem et 
al., 2023). As AgAI continues to evolve, its integration with existing data-driven systems is 
anticipated to further streamline and enhance the accessibility, usability, and impact of these 
transformative solutions, steering in a new era of innovation and efficiency in agriculture. 

Materials and Methods 
The following sections aimed to describe the individual components of Seed placement and Nema 
Digital.  

Precise seed and nutrient placement  
The seed and nutrient placement solution available in Cropwise® equips growers with field-level 
yield estimations tailored to various weather, soil, and management scenarios, enabling informed 
input decisions such as variety selection, planting density, and nutrients. Additionally, growers 
with variable rate application technologies receive site-specific management prescriptions to 
enhance input efficiency through variable planting density and nutrient application customized to 
specific environmental conditions (Figure 1) 

 
Figure 1 Example of the Precise Seed and Nutrient Placement Solution available through Cropwise using agronomy algorithms 
developed by Computational Agronomy and Regional Agronomy teams. The data-driven solution involves six major steps: 
Attainable yield estimation for diverse scenarios of weather, soil, and management practices (Step 1), variety selection (Step 2), 
site-specific productivity and management zone delineation (Step 3-4), variable plant density recommendation (Step 5), and variable 
rate prescription creation (Step 6).  

 

Attainable yield estimation 

We characterize productive environments at the field scale through an approach that combines 
local calibrated crop models, and data on climate, soil, and growers’ management practices 
(Figure 2). Our team leverages an extensive network of trials and collaborates closely with local 
experts to develop and calibrate models, ensuring the reliability of our yield estimations. This 
approach considers variations in climate, soil, cultivar, and key management practices, providing 
tailored agronomic solutions specific to each production condition. It is important to note that these 
yield estimations are specifically relevant for pre-planting decision-making, helping growers define 
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their production yield target. To fully unlock this potential, growers must undertake the necessary 
management and crop protection practices throughout the growth season. 

 
Figure 2 Example of the data set used in Europe to develop Seed Selector model for grain corn.  

 
Seed Selection 

The Seed Selector model utilizes a set of rules that integrate environmental model classification 
and experimental data to deliver product (seed) recommendations. By leveraging a matrix 
structure, it can derive an unbiased ranking of seed products, drawing on extensive data sets and 
local expertise for model calibration through side-by-side comparisons (Figure 3). This approach 
offers a more robust alternative to standard analyses, allowing for the appropriate ranking of 
products using non-orthogonal data. Following calibration and validation by local and regional 
crop experts, growers can effectively apply this model to their own fields and specific 
requirements. 
 

 
Figure 3 Example of the data set used in Europe to develop Seed Selector model for grain corn.  

 
Productivity and Management zone delineation 
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Addressing field heterogeneity is a major opportunity for optimizing yield and productivity by 
enabling producers to adapt resource use to a sub-field level to increase the profitability of farm 
inputs. The productivity zones model aims at delineating, within one field, contrasting zones in 
terms of crop productivity (Figure 4). It was trained with minimum user input, but it is possible to 
adjust as needed. The model algorithm combines multi-season remote sensing data to categorize 
field zones into different productivity levels. These zones can then support variable seeds, 
fertilizer, or product rate application (Figure 1 and Figure 4).  
 
 

 
Figure 4 Productivity zones (left), yield map (center) and box plot showing yield variation within productivity zones for a field in 

Illinois. A higher R2 indicates a stronger correlation between the productivity zones and yield. 

 
Seed Rate recommendation 

To provide precise recommendations, the Computational Agronomy team and regional 
agronomists calibrate hybrid-specific response curves to plant density across different target 
environments. For example, in Europe, a total of 141 trials were used to calibrate these models 
during 2023 (Figure 5). These trials have a multifactorial design with hybrids and densities as 
factors.  
With these trials we fit continuous models that enable the optimization of seed usage in response 
to changes in the target environment. Environmental Index (EI) is used to characterize the 
environment and is calculated as the average yield of all plots inside a trial. Then, the density that 
results in the maximum yield for each EI is used as a recommended seed rate.  
Once the grower defines their target environments, whether at the field level (Figure 1, step 1) or 
within the field (Figure 1, Step 3), and subsequently selects the best product for those 
environments (Figure 1, Step 3), the next step is to determine the planting density and nutrient 
needs per environment (Figure 6). In the case of a field with three zones (Figure 6), the user will 
provide an EI for each zone. Then, these EI are used to extract the density value that maximizes 
the yield and create a planting prescription with those values. 
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Figure 5. Seed rate trial location for corn in Europe. 

 

 
Figure 6. Productivity zones (left) and plant density curves of the recommended hybrid (right). The colors in the plant density curves 

represent different levels of Environmental Index (EI). 

Nema Digital 
 
The Nema Digital solution aimed at highlighting locations that have been damaged by nematodes 
in a soybean field. The tool helps growers to identify fields with the highest percentage of visible 
nematode damage and select the best countermeasures that include the use of the appropriate 
tolerant cultivars and/or crop protection technologies. 
The tool also supports growers in their soil sampling activities by providing recommendations on 
the best locations for soil sampling. 
 
Detecting and identifying nematode damage is not an easy task. There is no specific spectral 
signature of the nematode damage on the soybean canopy in the field. From a satellite 
perspective, nematode symptoms can be similar to nitrogen deficiency or fungal infections for 
example. 
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The specificity of nematode damage relies on its temporal signature. Nematodes don’t impact 
crops the same way. Species such as soybean cyst nematodes only impacts soybean and not 
corn that is usually part of the same cropping system in Brazil and US. 
Thus, combining knowledge of cropping systems and pathogenicity of nematodes, we designed 
a model that uses satellite images from multiple seasons to isolate nematode damage in the field.  

 
Figure 5 Description of Nema Digital solution. The model uses five years of satellite imagery, a field boundary, and five years of 

crop rotation history as inputs. The model predicts a nematode damage map. 

The model was initially developed for Brazil where the soybean season occurs during the rainy 
season (November to March). This period is extremely challenging in terms of cloud free satellite 
images availability. To capture stress on the soybean canopy, images should be collected during 
the entire soybean season. The model, thus, leverages two sources of images (Sentinel2 and 
PlanetScope imagery) to make sure the number of images used by the model is sufficient. Using 
Sentinel2 as a primary source of satellite imagery, the model detects periods without any cloud 
free images and automatically requests cloud free PlanetScope imagery to fill the gap.  

Results & Discussion  

Seed placement adoption and usage  
In the dynamic landscape of modern agriculture, there is a need for a robust solution to enhance 
the positioning of seed products. The Seed Selector model plays a pivotal role in driving sales 
growth, improving customer retention, and optimizing the performance of Syngenta seed 
products. By leveraging a data-driven approach, the model can analyze environmental factors to 
identify the most suitable seed product for specific regions and farmer segments. This targeted 
approach not only enhances the precision of marketing and sales efforts but also ensures that 
farmers receive tailored solutions that align with their unique needs. Additionally, a well-optimized 
positioning model can lead to increased customer satisfaction, loyalty, and higher sales volumes. 
Furthermore, by aligning the seed products with specific environmental conditions and farmer’s 
demands, the model can significantly enhance the overall performance and effectiveness of these 
agricultural products, benefiting both the company and farmers. The current model reaches 36 
combinations of crops (hybrid-barley, grain corn, silage corn, sunflower, and soybean) and 
countries and will be extended to more countries and new crops (wheat and winter oilseed rape) 
in Europe.  

Nema Digital adoption and usage 
The Nema Digital solution has been commercially released in Brazil in 2023 and will be available 
in the US in 2025. The model has a high precision higher than 90%. The model identifies locations 
where the probability of finding nematodes is very high. It identifies locations with the expected 
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largest nematode population in the field (since it has visible damage). This assumption has been 
further tested in 2024. The model only detects location showing vegetation anomalies which 
ensure consistency in the output (no damage "hallucinations"). If there are nematodes in the soil, 
but no damage, there will be no detection by the model. The model will fail to identify nematode 
damage in locations where the damage from nematode stress is associated with another source 
of stress that is consistently present across the seasons (corn and soybean seasons). In addition, 
small areas (less than 5 x 5 meters) would not be detected. 

Learning lessons and best practices  
The integration of agronomic models and big data into decision support systems such as Precise 
Seeds and Nutrient Placement and Nema Digital has yielded several key lessons: 

• Data Quality is Paramount: The success of integrating agronomic models and big data 
hinges on the quality, accuracy, and reliability of the data. Ensuring data quality through 
rigorous validation and calibration processes is essential for generating trustworthy 
insights and recommendations. 
 

• Model Calibration and Validation: Agronomic models must be continuously calibrated and 
validated using real-world data to ensure their accuracy and relevance in diverse 
agricultural settings. This iterative process helps refine the models and enhance their 
predictive capabilities. 

 

• Interdisciplinary Collaboration is Crucial: Effective integration of agronomic models and 
big data requires collaboration between agronomists, data scientists, software engineers, 
and domain experts. Interdisciplinary teams can leverage diverse perspectives to develop 
comprehensive and effective decision support systems. 

 

• Scalability and Adaptability: Decision support systems must be designed to accommodate 
diverse farming operations, crop types, and geographical variations. Scalability and 
adaptability are crucial to ensure that the integrated models and data can be effectively 
applied across different agricultural contexts. 

 

• User-Centric Design: User experience and usability are critical factors in the successful 
adoption of decision support systems. Systems should be designed with input from end-
users to ensure that the insights and recommendations are presented in a clear, 
actionable, and user-friendly manner. 

 

• Continuous Improvement and Feedback Loops: Establishing feedback loops from users 
and real-world outcomes is essential for continuously improving decision support systems. 
This iterative approach allows for the refinement of models, data inputs, and 
recommendations based on practical experiences and user feedback. 

 

• Ethical Use of Data: The integration of big data into decision support systems requires a 
commitment to ethical data use, privacy, and security. Clear guidelines and protocols for 
data collection, storage, and usage are essential to maintain trust and compliance with 
relevant regulations. 

 

• Education and Training: Providing training and support for users is crucial for the effective 
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utilization of integrated agronomic models and big data. Users need to understand the 
underlying principles, limitations, and potential applications of the decision support 
systems to maximize their benefits. 

By internalizing these key lessons, stakeholders can navigate the complexities of integrating 
agronomic models and big data into decision support systems more effectively, leading to 
improved agricultural decision-making, resource optimization, and sustainable farming practices. 
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