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Abstract.  

Data-driven analysis can add value to the efficiency and output of modern agricultural 
harvesting operations. Accurate efficiency analysis and logistics planning relies on the correct 
classification of machinery operating modes. While rule-based methods are common within the 
literature, they require expertise to design and are fixed in their structure. Machine learning 
approaches, however, require limited prior knowledge of the machinery’s operating 
characteristics. 

In this study, RTK GPS and SAE J1939 data recorded on a combine harvester operating on a 
commercial farm were used to generate “harvesting” and “not-harvesting” operating mode 
labels. A Support Vector Machine is presented to automatically classify when the machine is 
harvesting, using geolocation data only. The model was trained using K-Fold cross-validation 
with random sampling. The model was evaluated on test data omitted during training. The 
results demonstrate that the best performance was achieved when using normalized speed and 
normalized machine heading as input features, resulting in an accuracy of 0.91.  

This study demonstrates the potential of using machine learning to classify in-field machinery 
operating modes. 
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1. Introduction 

Operating is identified as one of four phases in the management of agricultural machinery; it is 
defined as ‘executing operations using labour and machines’ (Bochtis et al., 2014). The high 
complexity of machine use in agricultural production means that machines have to accomplish a 
wide range of tasks to satisfy multiple demands (Kortenbruck et al., 2017). Jensen (2013) defined 
machine operating modes as the knowledge of what the machinery is doing at each time step of 
the operation. 

Machinery operating costs constitute a significant portion of farm business expenditure (Edwards, 
2015). Labelled machinery operating mode data can be used to conduct efficiency analysis 
(Layton et al., 2017) and influence decisions on maintenance planning (Yazdi, 2024) to ultimately 
reduce costs incurred by unproductive operational time. Identifying machine operating modes is 
critical in operational task assignment (Du et al., 2023) and scheduling (Guan et al., 2018) when 
multiple machinery are involved. Extensive research has been conducted on applying 
optimisation algorithms in production planning (Taşkıner & Bilgen, 2021) and in-field logistics, 
where machines must interact for shared operations (Ali et al., 2009). These methods will require 
accurate and automated labelling of machine operation modes to precisely reflect the current 
conditions (Bochtis et al., 2014). 

SAE J1939 (Society of Automotive Engineers, 2024) data collected on the Controller Area 
Network (CAN) bus may be analyzed for operating mode classification (Kortenbruck et al., 2017) 
(Paraforos et al., 2017). However, acquiring and converting these data into a usable format to 
extract relevant features for classification requires sophisticated algorithms and data 
management. Alternatively, classification can be achieved by using rule-based algorithms on 
Global Positional System (GPS) data (Jensen & Bochtis, 2013) (Zhang et al., 2017) (Wang et al., 
2023). These methods have been shown to be effective for classifying machinery operating 
modes. However, when designing rules, the derivation of empirical thresholds and heuristics can 
be particular to a specific operator, crop-type or machine. As a result, this may inhibit rule-based 
methods to generalize between various operation use cases. 

Machine learning algorithms can remove the requirement of prior domain knowledge and 
programming context specific rules. Machine learning methods have been applied to classify in-
field and on-road machinery data in (Poteko et al., 2021) (Chen et al., 2022). Yang (2022) reported 
a precision of 0.53 when using k-means clustering to classify ‘working’ and ‘turning’ operating 
modes for a wheat harvester operating within field boundaries. Two iterations of the k-means 
clustering were applied. The first iteration clusters on the relative bearing angle between points. 
The second round of clustering, which uses the output from the first, clusters on the distance 
between points. The authors reported a final precision of 0.93 after correction steps were applied 
to clustered output.  

In this study, we define harvesting as when the machine is operating within the field boundaries 
and loading crop. We aim to classify samples into harvesting and not-harvesting. We use a 
Support Vector Machine (SVM) architecture because of its ability to transform features into a 
higher-dimensional space to find linearly and non-linearly separable patterns in the data 
(Montesinos López et al., 2022). 

The main contributions of this paper are: 

1. Present an SVM model to classify harvesting operating mode for a combine harvester using 

geolocation data only. 

2. Train and evaluate the developed model using labels generated from Real-Time Kinematic 

(RTK) GPS and J1939 data recorded on a commercial farm. 
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2. Materials and Methods 

2.1 Data Capture  

RTK GPS and J1939 machine data were collected from a John Deere S760 combine harvester 
machine from a farm in West Lafayette, Indiana during 2021. The harvester worked alongside a 
single grain cart and two trucks to harvest corn and soybean crops (Simmons, 2024). In this study, 
we only considered the data collected from the harvester machine for operating mode 
classification. Data from the other machinery were not used.  

The harvester machine RTK GPS data were sampled at 8Hz. A Kvaser Memorator Pro 2xHS 
logger was used to record the J1939 machine data. The logger was powered by the CAN-bus 
port, which automatically detected when bus traffic was active and recorded data.  

In this study, we define a track as the trajectory completed by the harvester machine from when 
it enters the field boundaries until it exists the field boundaries. The data were segmented into 
tracks using manually drawn field boundaries derived from satellite images (Simmons, 2024). For 
a single field, there may be up to two tracks. Track samples were decimated from 8Hz to 1Hz, 
retaining only the first samples recorded for each second. 

2.2 Data Preprocessing and Harvesting Labelling 

Based on knowledge of typical machine operating patterns, it is assumed that the machine is 
harvesting only when moving and the header is down. Thresholds were defined for a) machine 
speed and b) header position data, to programmatically label the data. 

a) The Haversine formula was used to calculate the distance travelled between samples. Figure 
1 shows a plot of the measured speed for a track. Machine speeds greater than 0.1 m/s were 
labelled as ‘moving’. Moving samples were candidates for harvesting labelling. 

 

b) Track header position data were decoded from an 8-bit message payload representing a value 
from 0 to 255. Header height can vary between fields depending on the crop condition. 
Therefore, for every track, header position values were plotted against sample index to 
determine an appropriate threshold to label the header as ‘down’. Figure 2 shows a plot of the 
header position for a track.  

 

Figure 1: Plot of speed (m/s) vs sample index for Field 1 Track 2. Samples where the measured speed was greater than 0.1 
m/s, represented by the dotted red line, were candidates for harvesting labelling.  



Proceedings of the 16th International Conference on Precision Agriculture 
21-24 July, 2024, Manhattan, Kansas, United States  

4 

 

 
Figure 2: Plot of the header position vs sample index for Field 1 Track 2. Samples where the measured header position was 

less than a threshold of 200, represented by the dotted red line, were candidates for harvesting labelling.  

In total, seven tracks from five fields were processed. Table 1 details the total number of 
harvesting samples and not-harvesting samples used for training and testing.  

Table 1: Summary of the total number of samples available for training and testing. There are twice as many harvesting 
samples compared to not-harvesting samples in both the training and test set. 

2.3 Feature Engineering 

Machine tracks were processed individually. Three types of features were extracted per sample: 

1. Machine speed  
2. Machine heading 
3. Latitude and longitude 

Machine speed (S) was normalized (n) to the range [0,1]. For each sample, measured speed was 
divided by the maximum speed value recorded in the track (t). Outputs from the normalised speed 
were quantized into intervals of 0.05. 

Machine heading (H) was calculated as the forward azimuth using the PyProj library (Pyproj.Geod 
- Pyproj 3.6.1 Documentation, 2024). This represents the angle in radians (r) measured clockwise 
from true north to the machine course over ground (𝑌𝑟). To convey the cyclical nature of heading 
to our machine learning model, cyclic encoding was performed by applying the sine transform 
converting the heading angle into a continuous range of [-1, 1]. 

Cyclic encoding was also applied to the geolocation data measurements (G). First, the latitude 
and longitude were converted from degrees to radians. Min-max normalization was applied to 
scale the data to the range [0, 2𝜋]. Finally, the sine and cosine transforms were applied.  

The features are summarized in Table 2. 

 

 

 

Samples Harvesting Not-Harvesting Total 

Training 63671 37614 101285 

Test 22109 12842 34951 
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Table 2: Formulae used in feature extraction from our geolocation samples for input into the model.  

2.4 Training Methodology  

Sci-kit Learn (SVC, 2024) was used to implement the SVM model architecture. To train the model, 
the data were split into a train and test set. One whole single track was reserved for testing to 
evaluate the model’s performance, as shown in Table 1. Five-fold cross-validation was applied in 
training. Samples were randomized with a seed to ensure consistency in training. 

Different combinations of the features were evaluated when training and testing the model. Two 
kernel functions were also evaluated, the linear kernel and the radial basis function (RBF) kernel. 
The linear kernel was used to determine if a linear relationship existed between the features. The 
RBF kernel was used to account for any non-linear relationships that may exist between features. 
The regularization parameter was set to ‘1’ (default) and gamma parameter for the RBF kernel 
was to ‘scale' (default).  

3. Experimental Results 

The test accuracy (AC) for each model fold is presented in Table 3. The results for recall 
(sensitivity), specificity, precision and F1 scores per model fold were averaged. 

Table 3: Calculated metrics of model performance on the test track. Test accuracy per model fold is presented, the 
remaining metrics were averaged. The results show that the SVM model trained using an RBF kernel on features speed 

and heading produced the highest average classification accuracy at 0.91. 

 

Accuracy results on each fold show that the model was stable across all feature combinations. 
The linear kernel accuracy ranges from 0.81 to 0.84 and the RBF kernel accuracy ranges from 
0.84 and 0.91. 

The model trained using an RBF kernel on normalized speed and normalized heading returned 
the highest accuracy at 0.91. The model average sensitivity and average specificity were 
calculated at 0.95 and 0.84 respectively. These scores indicate that in general, the model 
performed better at predicting harvesting samples and underperformed when predicting not-
harvesting samples.  

Table 4 presents the model predictions for fold 0 in a confusion matrix. 20927 out of the 22109 
test samples were correctly predicted as harvesting. 10709 out of the 12842 test samples were 
correctly predicted as not-harvesting. Figures 3, 4 and 5 are included to visualize which samples 
model fold 0 correctly and incorrectly classified.  

Figure 3 displays a plot of the labelled test track. The machine entered the field from the top-right 
and navigated over to the left-hand side to begin harvesting. The machine harvested in straight-
line rows, moving from left-to-right across the field. The machine performed a headland turn 
maneuver at the end of each harvested row to enter the next adjacent row and continue 
harvesting. The plot shows there was a section of unharvested ground, located in the middle-left  

Feature Key Formula Number Of Features Range 

S 𝑠𝑛 =
𝑠

max(𝑠𝑡) 
   1 [0,1] 

H 𝑌𝑛 = sin(𝑌𝑟) 1 [-1, 1] 

G 

𝑙𝑎𝑡𝑟_𝑛 = (
𝑙𝑎𝑡𝑟 − min(𝑙𝑎𝑡𝑡_𝑟)

max(𝑙𝑎𝑡𝑡_𝑟) − min(𝑙𝑎𝑡𝑡_𝑟) 
) × 2𝜋,        𝑙𝑜𝑛𝑟_𝑛 = (

𝑙𝑜𝑛𝑟 − min(𝑙𝑜𝑛𝑡_𝑟)

max(𝑙𝑜𝑛𝑡_𝑟)− min(𝑙𝑜𝑛𝑡_𝑟)
) × 2𝜋 

 
sin(𝑙𝑎𝑡𝑟_𝑛),  cos(𝑙𝑎𝑡𝑟_𝑛),  sin(𝑙𝑜𝑛𝑟_𝑛), cos(𝑙𝑜𝑛𝑟_𝑛) 

4 [-1, 1] 

Kernel Features 
Used 

Fold 
0 AC.  

Fold 
01 

AC. 

Fold 
02 

AC. 

Fold 
03 

AC. 

Fold 
04 

AC. 

Fold 
Average 
Test AC. 

Fold 
Average 

Sensitivity 

Fold 
Average  

Specificity 

Fold 
Average 
Precision 

Fold 
Average 
F1 Score 

Linear All (G, S, H) 0.809 0.809 0.813 0.809 0.812 0.81 0.84 0.76 0.86 0.85 

Linear G, S 0.810 0.809 0.812 0.809 0.812 0.81 0.84 0.76 0.86 0.85 

Linear S, H 0.842 0.842 0.842 0.842 0.842 0.84 0.90 0.74 0.86 0.88 

RBF All (G, S, H) 0.845 0.844 0.845 0.845 0.845 0.84 0.83 0.88 0.92 0.87 

RBF G, S 0.862 0.863 0.862 0.862 0.862 0.86 0.87 0.85 0.91 0.89 

RBF S, H 0.905 0.905 0.906 0.905 0.906 0.91 0.95 0.84 0.91 0.93 
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Table 4: Fold 0 model confusion matrix results. The total sample counts are displayed in each quadrant showing the 

distribution of predictions. The matrix quadrant color matches the model predictions colors used in Figures 4 and 5. 

 

 

 

 

hand side of the field. This area was likely not planted, possibly due to the field topography. When 
the operator reached this section, they encircled the unplanted ground first, and then resumed 
harvesting the field in a straight-line pattern.  

Figure 4 displays the true positive and false positive predictions for model fold 0. Figure 4 
illustrates that the model performed well in classifying straight-line harvesting samples. 
Additionally, the plot shows two distinct types of false positive predictions; when the machine 
initiated a headland turn at the end of a harvest row, and when the operator lifted the machine 
header in the middle of a harvest row to drive through unplanted ground.  

Figure 5 displays the true negative and false negative predictions for model fold 0. The plot shows 
that samples at top of the field, where the machine entered the field, were correctly classified as 
not-harvesting. Inspecting the bottom of the plot shows that samples where the machine 
performed a headland turn were partly classified as not harvesting. The plot also shows that false 
negative predictions occur within the harvest rows.  

 
Figure 3: Labelled test track machine samples. The green colored points represent when the machine is harvesting. The 

red colored points represent when the machine is not harvesting. The track shows that the operator lifts the combine 
machine’s header when navigating the headland turns and also when driving over unplanted ground. 

 

 

 

   Actual Values 

    Harvesting NOT-Harvesting 

Model Predicted 
Values 

Harvesting 
20927 

(TP) 
2133 
(FP) 

NOT-Harvesting 
1182 
(FN) 

10709 
(TN) 
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Figure 4: Fold 0 model predicted harvesting samples. The green colored points represent true positive predictions where 
the machine was correctly classified as harvesting.  The red colored points represent false positive predictions where the 

machine was incorrectly classified as harvesting.  

 
Figure 5: Fold 0 model predicted not-harvesting samples. The green colored points represent true negative predictions 

where the machine was correctly classified as not-harvesting. The red colored points represent false negative predictions 
where the machine was incorrectly classified as not-harvesting.  

4. Summary  

This study presents an SVM model to classify in-field combine harvester geolocation data as 
harvesting or not-harvesting. The model was trained and evaluated on geolocation time-series 
data collected from a commercial corn and soybean farm. Recorded RTK GPS and J1939 
machine data were used to generate harvesting operating mode labels. K-Fold cross-validation 
was used in training and the model was evaluated on a track omitted during training.  

The results demonstrate an accuracy of 0.91 when using the RBF kernel with normalized speed 
and normalized heading as input features for classification. Plots of the predicted samples show 
that the model was able to effectively identify straight-line harvest row samples. However, the 
model underperformed in classifying samples where the machine drove through unplanted ground 
and separately when the machine executed headland turn maneuvers.  

Future work will include labelling the operation modes for other machinery involved in the harvest. 
We will also employ principal component analysis to inspect features for their importance and 
relevance. Using windowed samples, instead of individual samples, should also be investigated. 
Windowed samples may supply more context to the operating mode and improve classification 
performance.  
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