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Abstract 
 
Harvest efficiency expressed in quantity and quality of peanut fields could increase if farmers are 
provided with tools to support harvest decisions. Peanut farmers still rely on a visual and empiric 
method to assess the right time of peanut maturity but this method does not account for within-
field variability of crop growth and maturity. The integration of spectral vegetation indices to 
assess drought, soil moisture, and crop growth to predict peanut maturity can help farmers 
strengthen decisions on when and where to start the harvesting process. Two commercial irrigated 
fields, one located in Eufaula, Alabama, U.S., and the second located in Tifton, Georgia, U.S., 
were used in this experiment during the 2022 and 2021 growing seasons respectively. Starting 
around 97 days after planting, peanut biomass samples from multiple locations within each field 
were collected weekly. The assessment of peanut maturity was done manually on a 200-pod 
sample per location using the hull-scrape method and the peanut profile board. Two approaches 
were tested to predict the peanut maturity index. The first approach was using partial least-squares 
regression and the second was using auto-machine learning. Step-wise regression was used to 
select the best predictor variables and predict peanut maturity. Predictor variables were crop 
vegetation indices (NDVI, GNDVI, NLI, and MNLI), moisture index (NMDI), and drought index 
(NDMI) of the study field were estimated from Sentinel 2 satellite images. The step-wise multiple 
regression method identified spectral indices NDMI, NMDI, GNDVI, MNLI, NDVI, and NLI as 
best peanut maturity predictors. Auto machine learning (ML) algorithm outperformed partial least 
square regression in terms of accuracy and precision. NDMI showed a higher influence on ML 
model prediction whereas MNLI had a higher importance on partial least square regression. Future 
research should focus on integrating other explanatory variables, mainly related to variables that 
drive within-field peanut maturity variability, like soil temperature and weather data, and terrain 
attributes such as topographic indices. 
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Introduction 
 
Peanut is an important crop for the southeastern U.S. and is commonly used in rotation with cotton 
(Mulvaney et al., 2017). Determining the ideal time to start the harvest process is sometime 



challenging for peanut farmers (Colvin et al., 2018). Generally, farmers make this decision based 
on the assessment of peanut maturity determined from random sampling of peanut plants. The best 
quality, grade, and yield of seeds can be obtained by harvesting a field at its peak maturity (Santos 
et al., 2022). The oil content of peanut seeds from immature pods is generally lower, which can 
reduce their quality (Fincher et al., 1980). In contrast, harvesting plants with over-mature pods can 
result in yield losses of up to 40% because the pods will detach from the pegs during the inversion 
process and be lost in the soil (Lamb et al., 2004). The hull-scrape method (Willians et al., 1981) 
in conjunction with the peanut maturity index (PMI) (Rowland et al., 2006) have been widely 
adopted by peanut producers in the U.S. and other countries (Santos et al., 2022). This method is 
time consuming, laborious, and subjected to uncertainties during the visual classification. To 
overcome this limitation methods based on remote sensing for estimating peanut maturity have 
been proposed. Most methods are based on RGB image analysis (Ghate et al., 1993), drone 
imagery (Santos et al., 2022), and satellite images (Souza et al., 2022). Some of the vegetation 
indices that have been used for peanut maturity prediction are: normalized difference vegetation 
index (NDVI), green normalized difference vegetation index (GNDVI), modified non-linear index 
(MNLI), enhanced vegetation index (EVI), non-linear index (NLI), soil adjusted vegetation index 
(SAVI), normalized difference red edge index (NDRE). Indices that can explain other plant 
processes like canopy moisture and drought effects could increase the predictability of the models 
to estimate peanut maturity. Among the algorithms used to predict peanut maturity are artificial 
neural networks, non-linear models, and linear models (Souza et al., 2022, Santos et al., 2022). 
The comparison of multiple linear regression models and different types of machine learning 
algorithms and a method to interpret the influence of the remote sensing variables in the prediction 
of peanut maturity was not tested yet. This evaluation could help to understand the performance 
of different algorithms, identify the influence of the vegetation indices on the model’s predictions, 
and support the farmers with a non-destructive method for peanut maturity prediction. Following 
this rationale, the objective of this study was to compare and interpret multiple linear and non-
linear algorithms to predict peanut maturity based on crop and drought spectral indices. 
 
Materials and Methods 
 
Study field description and data collection. Two commercial irrigated fields, one of 54.76 hectares 
(ha) located in Eufaula, Alabama (AL), U.S. (F-AL), and the second of 9.24 ha located in Tifton, 
Georgia (GA), U.S. (F-GA), were used in this experiment during the 2022 and 2021 growing 
seasons, respectively. The irrigated fields were planted on May 26th and May 10th, using the same 
peanut runner-type cultivar Georgia-O6G, which has a growing cycle of approximately 140 ± days. 
Each field was divided into square grids, 20 grids for field F-AL and 14 for field F-GA, of 
contrasting soil characteristics which were selected for data collection (Figure 1). Starting 
approximately 94 days after planting, peanut biomass was collected weekly from various locations 
within each grid and assessment of peanut maturity was done manually on 200-pod subsample 
sample, using the hull-scrape method and the peanut profile board method (Wiliams & Drexler, 
1981). The peanut maturity index (PMI) was calculated using the following equation. 

𝑃𝑀𝐼!! =
"_$$%
&_%

                                                                                                                             (1) 

where, PMIBB is the peanut maturity index considering brown to black pods class 



N_bbp is the number of pods in the brown and black class 

T_p is the total number of pods 

Satellite imagery and spectral indices. To establish a functional relationship between peanut 
maturity and spectral reflectance changes of the canopy over time, Planet Labs imagery data was 
used to extract reflectance from specific spectral bands and calculate several vegetation indices 
(Table 1). The surface reflectance Ortho Scene product was acquired from PlanetScope, Planet 
Labs, Inc., San Francisco, USA (Planet, 2020) under a student license. Cloud Planet Scope imagery 
data provide 3 m spatial resolution images. The PlanetScope imagery data used had four spectral 
bands: blue (455–515 nm), green (500–590 nm), red (590–670 nm), and near-infrared (NIR, 780 
– 860 nm) in a 16-bit GeoTiff format. The spectral band images were carefully selected for days 
with 0% cloud over the study areas.  

Table 1. Spectral indices used as predictor variables in the prediction of peanut maturity  

Vegetation Index Equation Reference 
NDVI (NIR−RED)/(NIR + RED) Rouse et al. (1974) 
NLI (NIR2−RED)/(NIR2 + RED) Goel & Qin (1994) 
GNDVI (NIR−Green)/(NIR + Green) Gitelson & Merzlyak (1996) 
MNLI (NIR2−RED) × (1 + L)/(NIR2 + RED + L) Gong et al. (2003) 
NDMI NIR-SWIR1/NIR+SWIR1 Seeyan et al., 2014 
NMDI NIR-SWIR1+SWIR2/NIR+SWIR1-SWIR2 Wang & Qu 2007 

 

The geoprocessing steps of extracting reflectance data and calculating the six vegetation indices 
were performed using QGIS software (Free software Inc, Boston, United States). 

Model training and validation. Two approaches were tested for prediction of peanut maturity 
expressed as peanut maturity index. The first approach was using a partial least-squares regression 
and the second was using auto-machine learning (ML). Partial least-squares regression performs 
least-squares regression on smaller and uncorrelated variables rather than the use of the entire 
dataset (Ryan & Ali, 2016). Auto-machine learning approach can automatically conduct 
hyperparameter tuning, feature scaling, and random grid searches and generates several models 
based on numerous model performance metrics (Dilmurat et al., 2022). In this study, auto-machine 
learning was tested using distributed random forest, generalized linear model with regularization, 
XGboost, gradient boosting machine, and deep learning. Only the best model in the validation 
phase is presented in this study. For both methods evaluated on this study, the dataset was split 
into 80 % for training and 20 % for validation.  
The indices NDVI, GNDVI, NLI, MNLI, NDMI and NMDI were used as explanatory variables to 
predict PMI_bb. The metric to analyze the performance of the algorithms was the mean absolute 
error MAE (Equation 2), and coefficient of determination (R2). 

𝑀𝐴𝐸 =	
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where, n is the number of data, Yesti is the value of the variable estimated by algorithm, Yobsi is 
the value of the observed variable. 



Influence of input parameters on PMI prediction. The resultant model was considered using the 
lowest MAE and the higher R2. After the selection of the resultant model (best features and ML 
algorithm and partial least-squares regression), the model was analyzed to understand the 
importance of each variable in the predictions. ML models offer a complex architecture, but 
interpreting the output of these models, is a demanding task (García & Aznarte 2020). Novel 
approaches are being used to interpret the output of the ML models (García & Aznarte 2020). One 
approach proposed to overcome this challenge is Shapley Additive exPlanations (SHAP), a 
technique that is based on game theory and its related extensions, Shapley values are used to 
connect optimal credit allocation with local explanations (Lundberg & Lee 2017). SHAP calculates 
the importance of a feature in the model comparing the estimation with and without the feature 
(García & Aznarte 2020; Lundberg & Lee 2017). In order to ensure that the features can be fairly 
compared, this process is implemented in every possible order so that its estimates are not 
influenced by the order in which it captures each feature (Lundberg & Lee 2017). The SHAP 
analysis was performed using Python 3 programing language trough the libraries H2O and SHAP.  
 
Results and Discussion 
 
The F-AL field showed an average maturity of 63 %, a maximum of 93 % and a C.V of 36.68 % 
which demonstrates peanut fields might exhibit a high degree of peanut maturity variability. F-GA 
field showed less variability than the F-AL field (C.V. 26.61 %) and lower values of average (40%) 
and maximum (65 %) maturity. On average, the F-AL field had a 20 % higher percentage of PMI. 
The optimum PMI is 70 % (Rowland et al., 2006), based on this information Field-1 had areas 
where the peanut was over-mature (Max 93 %) and under-mature (Min 65%). While Field-2 did 
not reach the optimum maturity.  

Table 2. Descriptive analysis for peanut maturity (PMI) in two fields. 

Field Mean Minimum Maximum C.V. % STD 
F-AL 0.60 0.16 0.93 36.68 0.22 
F-GA 0.40 0.13 0.65 26.61 0.09 

C.V = Coefficient of variation, STD = Standard deviation  

 
The partial least-squares model described the observed variation in peanut maturity well with five-
fold cross-validation producing an MAE = 7 % and an R2 = 0.81 (Figure 1A). When considering 
the performance of the XGBoost model, an MAE = 4% and an R2= 0.94 was observed (Figure 
1B). These validation statistics demonstrated that the machine learning approach could outperform 
a multi-linear regression model to describe the observed spatial peanut maturity index integrating 
crop and drought spectral indices. PLS combines elements of two regression methods, principal 
components regression, and multiple linear regression, and is able to handle hyperspectral data 
with collinearity by inputting all spectral bands at once and then identifying uncorrelated variables 
from a matrix of explanatory variables (Geladi & Kowalski, 1986). XGBoost is a boosting 
algorithm that uses decision trees as its base learners. The idea behind the algorithm is to 
sequentially improve the model by reducing the residuals of the previous model in the gradient 
direction, resulting in a new model (Jin et al., 2021).  



 

 
 

Figure 1. Performance analysis of the test dataset comparing partial least square regression (A) 
and ML (B). 
 

The SHAP summary plots efficiently conveyed the feature importance (Figure2 and 3). Features 
are ranked based on the mean absolute SHAP value. When considering the partial least-square 
regression, the MNLI had the highest mean feature importance, followed by NLI, NDVI, NDMI, 
GNDVI, and then NMDI (Figure 2). The SHAP plot for the XGBoost model demonstrated the 
NMDI has the highest importance on predicting peanut maturity index followed by MNLI, 
GNDVI, NDVI, NDMI, and NLI. PLS regression and XGBoost showed differences in variable 
importance. For PLS regression the most important variable was MNLI whereas for XGBoost was 
NMDI. Peanut leaf area index (LAI) increases during plant growth, decreases during the 
reproductive process, and LAI peak during the flowering stage (Qi et al., 2020). This LAI pattern 
can express the correlation between the NMDI, MNLI and the PMI. NDMI tends to be higher with 
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higher LAI and responds almost linearly with leaf water content (Wang & Qu, 2007) and MNLI 
is correlated with LAI (Gong et al., 2003). It is expected if the NMDI changes with LAI and the 
LAI decreases during the reproductive process, reaching lower values during the mature stage 
compared to the seedling stage, this correlation tends to be negative with PMI because the PMI 
behaves positively linearly. Which means higher PMI will occur during the maturity stage and the 
LAI at this point is lower than at the beginning of the pod-filling stage. 

     

Figure 2. Mean absolute SHAP value for partial least square regression. 

 

Figure 3. SHAP value for the resultant machine learning model. 

 

 



Conclusions 
 
The present study investigated the potential of using spectral indices of high-resolution satellite 
images to estimate peanut maturity index by comparing the use of machine learning models and 
partial least regression. The present study provides evidence that contributes to peanut maturity 
estimation at field scale. ML algorithm outperformed partial least square regression in terms of 
accuracy and precision. NDMI showed a higher influence on ML model prediction whereas MNLI 
had a higher importance on partial least square regression. Future studies should focus on 
integrating new variables that could explain terrain attributes and water accumulation such as 
topographic indices. 
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