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Abstract.  
Using proximal soil sensors (PSS) is widely recognized as a strategy to improve the quality of 
agricultural soil maps. Nevertheless, the signals captured by PSS are complex and usually 
relate to a combination of processes in the soil. Consequently, there is a need to explore further 
the interactions at the source of the information provided by PSS. The objectives of this study 
were to examine the relationship between proximal sensing techniques and soil properties and 
evaluate the feasibility of using data fusion to improve the mapping of soil chemical properties 
with extra-low sampling densities. Field data from ground penetrating radar, passive gamma-ray 
spectrometry, apparent electrical conductivity, resistance to penetration, and elevation were 
collected from a 43-ha site in Central Alberta, Canada. Soil sampling (originally with 0.4 
ha⋅sample-1 density) and subsequent lab analysis provided information on soil organic matter, 
pH, and plant-available phosphorous (P) and potassium (K). After pre-processing and co-
locating the sampling and sensor data, soil properties and some PSS data were correlated. 
Samples were then removed until a density of 3.5 ha⋅sample-1 was reached, thus creating an 
extra-low sampling density. Using PSS and topography data as predictors of the soil properties, 
machine learning (ML) algorithms (support vector machine, random forest, and partial least 
squares) were trained for each sampling density and validated using an additional 20 
independent soil samples. Differences between ML models or sampling densities were 
insignificant for a given soil property. However, the mean squared error (MSE) and the 
coefficient of determination (R2) indicated that some models outperformed others. Models with 
an R2 value above 0.5 were for P and pH with the 0.4 ha⋅sample-1 density and for P when the 
extra-low sampling design was applied. The definition of the evaluated ML algorithms does not 
consider the spatial location of the samples, which, from a mapping perspective, can create 
spatial inconsistencies; thus, to minimize this effect, an inverse distance smoothing window 
(SW) was applied to the predicted surfaces. The SW did not change predictions significantly, 
but often led to decreased R2 and increased MSE values. 
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Introduction 
Within-field soil mapping is crucial to understanding, planning, and applying efficient, 
responsible, and accurate soil management practices. Soil sampling and its subsequent lab 
analysis is the most traditional approach for soil mapping and is often used for soil fertility 
assessment in agriculture (Gebbers, 2018). A single composite sample from a field might 
provide insights into its average fertility levels but not into its internal variability. Thus, grid and 
zone samplings are standard precision agriculture (PA) practices to evaluate the within-field 
variability. In the 2023 PA dealership survey, a long-term study conducted in the United States 
(Erickson and Lowenberg-DeBoer, 2023), PA retailers estimated that 51% of their local market 
area uses georeferenced soil sampling (i.e., grid or zone sampling). 
Based on these numbers, precision agriculture practitioners use grid and zone sampling as a 
within-field fertility mapping approach. On the other hand, the U.S. dealerships involved in the 
above-mentioned survey estimated that 49% of the area did not use such a service. Such a high 
percentage of non-adoption could be attributed to the labor-intensive, time-consuming, and 
expensive nature of soil sampling, which induces farmers to opt for only a composite sample for 
the whole field or, in extreme cases, not to collect samples.  
Therefore, there exists a challenge to develop and evaluate time- and cost-efficient methods for 
assessing the within-field soil variability to increase the adoption of PA strategies for best soil 
management practices (e.g., variable rate fertilizer application). Adamchuk et al. (2011) and 
Gebbers (2018) suggested the fusion of proximal soil sensors (PSS) as a potential solution to 
this challenge, leading others to evaluate this approach. Ji et al. (2019) assessed the potential 
of machine learning algorithms (ML) using different combinations of apparent electrical 
conductivity (ECa), passive-g-ray spectrometry, visible and near-infrared spectroscopy, and 
topography as predictors for soil chemical properties. These authors reported an improvement 
in the prediction when sensors were fused compared to when used individually. Saifuzzaman et 
al. (2021) fitted multivariate linear models to predict soil chemical properties using ECa and 
topographic derivatives, obtaining similar findings as Ji et al. (2019) (i.e., there is a potential for 
data fusion to predict and map soil properties).  
Despite the potential of PSS to improve agricultural soil maps, the signals captured by such 
sensors are complex and usually relate to a combination of processes occurring in the soil 
(Gebbers, 2018). Also, previous research results, such as by Ji et al. (2019) and Saifuzzaman 
et al. (2021), were obtained using sampling densities of approximately 0.25 ha⋅sample-1, higher 
than commonly used by PA practitioners (1 ha⋅sample-1 - Erickson and Lowenberg-DeBoer, 
2023). In addition, over the years, other geophysical techniques, such as ground penetrating 
radar (GPR), gained interest from the agricultural community, so their interactions with soil and 
its chemical properties must be investigated thoroughly.  
Consequently, there is a need to explore the interactions at the source of the information 
provided by PSS and understand how the fusion of these data could provide better insights into 
soil spatial variability. The objectives of this study were to examine the relationship between 
proximal sensing data and soil properties, evaluate the feasibility of using the fusion of PSS and 
topography to improve the mapping of soil chemical properties and assess the effect of higher 
and lower sampling densities on the calibration model performance. 

Material and Methods 

Dataset description 
A total of 128 samples [108 from a 0.4 ha⋅sample-1 sampling design (Fig. 1 – solid black circles) 
and an additional 20 independent validation samples (Fig. 1 – solid green diamonds)] were 
collected in 2022 from a 43-ha field in Central Alberta, Canada. Samples were removed from 
the original grid until a density of 3.5 ha⋅sample-1 was obtained (Fig. 1 – hollow blue squares), 
creating an extra-low density sampling design. All samples were collected under the same 
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conditions and sent to the same laboratory for analysis. Samples collected from the topsoil layer 
(0-0.15 m) had their analysis results for plant-available potassium (K) and phosphorous (P), pH, 
and soil organic matter (OM) used to evaluate the prediction potential of PSS and topography. 
The above-described dataset is a subset of the one described by Karp et al. (2023a, 2024). 

 
Fig. 1 Centroid locations for the original sampling density (0.4 ha⋅sample-1 – solid black circles), selected samples to create 

the extra low-density sampling design (3.5 ha⋅sample-1 – hallow blue squares), and validation samples (solid green 
diamonds) (Modified from Karp et al., 2024) 

PSS data for soil resistance to penetration, ECa, dielectric permittivity, and passive g-ray for 
137Cs, 232Th, 238U, and 40K were collected using the tools described in Table 1. The field's 
topography was assessed by creating its digital elevation model (DEM) using an unmanned 
aerial vehicle-mounted light detection and ranging (LiDAR) paired with a real-time kinematic 
correction (RTK) enabled global navigation satellite systems (GNSS) receiver. Hereafter, the 
five tools and variables described in Table 1 will be collectively referred to as "sources" and 
"predictor variables," respectively.  
Due to timing constraints, such as weather conditions and the limited time window between 
harvest and first snowfall or last snowfall and crop development, the data from the different 
sources was not collected during the same season, but as follows: g-ray in Spring 2019, ground 
penetrating radar (GPR) in Summer 2020, penetrometer in Summer 2021, electromagnetic 
induction (EMI) in Fall 2021, and DEM in Spring 2022. From 2019-2022, the field was cultivated 
with annual crops under a rotation of wheat, barley, and canola. Within this timeframe, no 
significant soil disturbing operations (e.g., field leveling, subsoiling) were performed, and the 
field was seeded and fertilized using uniform rates.  

Processing for sensing data  
EM38-MK2 and SoilOptix (Table 1) data did not require specific pre-processing strategies 
before further procedures or analysis, while the other three data sources did. All data 
manipulation and filtering are described in the following sub-sections.   
Penetrometer Pre-Processing 

The original data from the S600 penetrometer provides pressure (kPa) measurements from 0 to 
0.6 m deep at 0.01 m intervals. Therefore, a total of 61 measurements are obtained for every 
sampled location. To reduce the number of variables and improve the data quality (i.e., reduce 
the effect of outliers), a mean boxcar with a window of 0.1 m (10 vertical measurements) was 
applied to the data. This process resulted in a dataset of 6 depth intervals of 0.1 m.  
LiDAR Pre-Processing 

LiDARMill (Phoenix LiDAR Systems, Austin, Texas, USA) was used to process the LiDAR data. 
This software automatically performed necessary data corrections, generated 788 points⋅m-2 

georeferenced point cloud, and exported a 0.1-meter DEM raster. Finally, a custom R script (R 
Core Team, 2022) opened the DEM raster and calculated the fields' topography derivatives: 
slope, aspect, and curvature using the library spatialEco (Evans and Murphy, 2021). 
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Table 1 Description of the sensors, mapped variables, and collection settings adopted 

Sensor 
Model 

Manufacturer/ 
Provider Technique 

Swath 
width 
(m) 

Density 
(points⋅ha-1) Variables 

S600 
Penetrometer 

Skok Agro  
(Vinnytsia, Vinnytsia 

Oblast-UA) 
Cone Index 64 8 

Resistance to 
penetration measured in 
pressure from 0 to 0.6 m  

(intervals of 0.01 m) 

EM38-MK2 
Geonic  

(Mississauga, Ontario-
CA) 

Electromagnetic 
Induction (EMI) 23 118 ECa Shallow (0-0.75 m), 

ECa Deep (0-1.5 m) 

SoilOptix 
SoilOptix  

(Tavistock, Ontario-
CA) 

Passive Gamma-
Ray (g-ray) 12 69 

137Cs Count, 232Th 
Count, 238U Count, 40K 

Count, Count Rate (CR) 

SIR-4000 
(400MHz 
Antenna) 

GSSI  
(Nashua, New 

Hampshire-USA) 

Ground 
Penetrating Radar 

(GPR) 
34 14,700 

Soil Profile Amplitude 
through changes in 
dielectric permittivity 

RECON-A 
Phoenix LiDAR 

Systems (Austin, 
Texas-USA) 

Light Detection 
and Ranging 

(LiDAR) +  
GNSS-RTKa 

- ~7.8⋅106 Elevationb 

aGNSS-RTK – Real Time Kinematic enabled Global Navigation Satellite System receiver; bElevation – a product of processing the 
GNSS-RTK location with the measured LiDAR distances 

Ground Penetrating Radar Pre-Processing 

The SIR-400 GPR unit provided separate files for GNSS and GPR readings. To open and 
process the data, a custom Python script and the library readgssi (Nesbitt et al., 2022) were 
used. Below is a simplified description of the GPR processing; a detailed description can be 
found in Karp et al. (2023b). 
Due to a higher collection frequency for the GPR than for the GNSS, linear interpolation was 
applied to the original coordinates, guaranteeing the georeferencing of all the sensor readings. 
In sequence, the GPR signal was processed by setting time-zero, using a "dewow" filter, 
removing background noise, applying a Hilbert transformation (calculates the signal envelope – 
instantaneous amplitude), and converting the signal travel time to relative depth (field estimated 
dielectric constant of 12.79).  
The GPR unit provided 512 vertical readings from the soil at every sampling location. Thus, the 
GPR instantaneous amplitude was subjected to a boxcar median with a 0.1 m window size. The 
maximum processing depth was set to 2 m, resulting in 20 depth layers. Since the density of the 
GPR data was very high within the collection transect (1 sample every 0.02 m – hence the high 
collection density in Table 1), a boxcar median was also applied in the direction of travel for the 
data collection. A 5 m distance between consecutive sampling points was achieved using a 250 
samples window.  
General PSS data filtering procedure 

After completing the specific processing for the individual data sources, all PSS data were 
filtered to reduce the effect of outliers and maximize the data quality. The filtering procedure 
followed the steps suggested by Karp et al. (2022):  (1) project the dataset to a custom localized 
Cartesian coordinate system, (2) identify and apply a position offset (e.g., the distance between 
the GNSS receiver and sensor), (3) operational filtering (i.e., removal of maneuvers, abrupt 
speed changes), (4) global and local statistical filtering.  

Dataset co-location  
To investigate the predicting capabilities of soil chemical properties using PSS and topography 
data, all the data must be co-located. Two approaches were adopted for the data co-location: 
one focused on building a dataset for training the predictive algorithms, and the other on 
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predicting the spatial distribution of the soil property.  
During the soil sampling activity, a GNSS receiver was used to record the location where the 
core samples were collected. At each core location, three subsamples were taken within a 5-
meter radius. This intrinsic characteristic of the sampling method defined the first co-location 
method. A 5-meter buffer was applied to the recorded core locations, and the median of PSS or 
topography observations within the buffered area was calculated and attributed to the 
corresponding sampling location. The final dataset comprised 41 columns: 6 depth intervals of 
soil resistance to penetration from the penetrometer, 20 depth intervals of instantaneous 
amplitude from GPR, two depth ranges of ECa from EMI, five count rates (total count rate plus 
the four separate nuclides) from g-ray, four from topography (elevation, curvature, aspect, and 
slope), and the soil analysis for P, K, pH, and OM.  
The above-described approach potentially minimizes issues with the change of support and co-
location inaccuracies; however, it does not provide a continuous surface. Thus, in the second 
approach, inverse distance weighting (IDW) was used to interpolate the PSS data to a 15-meter 
resolution raster. For the topography data, the 0.1-m raster was downscaled to the same 15-
meter raster using the median resampling method from gdalwarp (GDAL/OGR contributors, 
2024). This approach resulted in a 37-band raster containing only the predictor variables. 

Data preliminary analysis and predictive modeling  
The descriptive statistics for PSS, the two soil sampling densities, and validation samples were 
calculated in a preliminary data analysis. The original 0.4 ha⋅sample-1 co-located dataset was 
used to study the relationships between predictors and the soil properties by correlation 
analysis.  
Thereafter, all the data were standardized to a zero mean and a unit variance for homogeneity 
purposes. Partial least squares (PLSR; Wold et al., 1983), support vector machine (SVM; Platt, 
2000), and random forest (RF; Breiman, 2001) algorithms were evaluated using training data 
from the co-located 0.4 and 3.5 ha⋅sample-1 sampling designs. The three algorithms were 
implemented with a customized Python script using the library scikit-learn (Pedregosa et al., 
2012). The Python library Optuna was used to tune the model parameters individually for a 
given soil variable, ML, and sampling density.  
Most ML models benefit from larger datasets, and when exposed to a small number of 
observations and many predictors, they can overfit the training dataset (i.e., reduce the 
capability of generalizing the model). While a sampling density of 0.4 ha⋅sample-1 was available 
for this study site, coarser sampling designs are more common among PA practitioners. 
According to Erickson and Lowenberg-DeBoer (2023), two common barriers to the adoption of 
PA are related to the farm income and the PA service costs. Even though the 3.5 ha⋅sample-1 
sampling density provided only 12 samples, which might affect model performance, it 
broadened the discussion and produced realistic and practical results. From an economic 
perspective, using the original sampling density could defeat the option of collecting PSS and 
elevation data. 
None of the three ML algorithms mentioned above includes a spatial structure for the data, 
which is likely to be an issue when using the trained models to predict a continuous surface. 
Therefore, the application of an inverse distance weighted (IDW) moving window was 
evaluated.  
A window size and a matrix of weights are required to define the moving window. The window 
size limits the neighborhood of cells used to estimate the value at the center of the window. An 
estimate of the range of spatial autocorrelation was used as a basis to define the window size, 
assuming a circular shape and isotropy. Low-density sampling designs often will not provide 
enough information to obtain variogram estimates with traditional methods, so the approach 
proposed by Karp et al. (2024) was adopted. When a flat, pure-nugget effect variogram model 
was calculated, the minimum distance between sampling locations determined the window size. 
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The formula 1/(distance to window center)2 determined the weights. Map cells with a distance 
from the center of the window, greater than half the range of spatial autocorrelation, were 
removed, yielding a circular neighborhood. Finally, the weights were normalized so that the sum 
of their values was each time equal to 1.  

Predictive modeling comparison 
Mean Squared Error (MSE) and the coefficient of determination (R2) were used to assess the 
predictive results' performance. For each soil property, three ML algorithms, two sampling 
densities, and two predicted surface treatments ("No Spatial Smoothing" and "IDW Moving 
Window") were evaluated, resulting in 12 different predictive results per soil property. These 
results were assessed using 20 independent validation samples for a given soil property. The 
squared errors from the results were compared through a pairwise Levene's test; when the null 
hypothesis was rejected (homogeneity of variances), meaning there was heterogeneity in the 
variance of the squared errors, the two evaluated prediction results were considered different. 
The effect of ML algorithms on prediction accuracy was evaluated independently for each 
sampling design and a given soil property. A multi-objective decision-making logic was adopted 
to guarantee the selection of the most robust ML algorithm: 
1. Models that presented statistically significantly lower errors were selected. If no statistically 

significant difference was observed, all models were selected. 
2. If only one model was selected in Step 1, go to Step 5. Otherwise, MSE was standardized to 

a scale between 0 and 1. 
3. A score was calculated using the formula R2 + (1- standardized MSE) and ranked in a 

descending order. 
4. The model with the highest score was selected as the best predictor. The selected model 

was considered the most robust ML algorithm for the given dataset. 
Using R2 and MSE simultaneously avoids selecting models with low MSE and low R2 and high 
R2 and high MSE while selecting accurate models that best explain the variance of the soil 
property in the validation samples.  
The most robust models for the two sampling densities were then compared, analyzing the 
effect of sampling density on the prediction of soil chemical properties. The IDW Moving 
Window effect was evaluated in sequence for a given density. Finally, thematic maps were 
generated for predicted surfaces and compared to surfaces obtained through ordinary kriging 
interpolation of the 0.4 ha⋅sample-1 sampling design. All data, interpolation, and statistical 
analysis were performed using custom scripts written in the R language, and all standardized 
data and predictions were back transformed to report the results.  

Results and Discussion 

Descriptive Statistics 
The descriptive statistics for the validation samples and the original and extra-low soil sampling 
designs are presented in Table 2. Similar standard deviations (SD), means, and medians are 
observed for the original (0.4 ha⋅sample-1) and extra-low (3.5 ha⋅sample-1) designs for a given 
soil property, indicating that there is a good overall representation of the underlying surface 
even with only 12 samples. The inline histograms from these two sampling densities differ, 
though, an expected response due to the reduction of almost 90% of samples. Note that pH and 
OM presented a smaller variance than P and K for both sampling designs. 
The means and medians for the validation samples are lower for K, P, and OM than for both 
sampling designs, whereas they are slightly higher for soil pH. The SDs of the validation 
samples are lower than that of the grid sampling for K and slightly higher for P, pH, and OM. 
Except for pH, the inline histograms for the validation samples are similar to the 0.4 ha⋅sample-1 
design. Despite these slight differences, the validation samples capture a similar variability as 
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the grid samples, an important characteristic to guarantee the validity of further analysis using 
this dataset.  

Table 2 Descriptive statistics for soil testing results for plant-available potassium (K) and phosphorous (P), pH,  and soil 
organic matter (OM) from two sampling densities and validation samples. (Modified from Karp et al., 2024) 

Density 
Grid Samples Validation Samples 

na Variable Mean Standard 
Deviation Median Histogram na Mean Standard 

Deviation Median Histogram 

0.4  
ha⋅sample-1 108 

K (ppm) 133.9 37.6 130.5 ▂▇▆▁▁ 

20 

128.0 31.5 122.5 ▂▇▅▂▃ 

P (ppm) 34.0 14.8 33.5 ▇▇▃▁▁ 29.3 18.4 24.0 ▇▃▁▂▁ 

pH (-) 7.37 0.49 7.30 ▃▇▇▆▅ 7.58 0.79 7.75 ▇▃▂▅▇ 

OM (%) 7.24 0.69 7.20 ▁▇▇▃▁ 6.72 0.70 6.75 ▁▃▇▃▃ 

3.5 
ha⋅sample-1 12 

K (ppm) 127.8 40.7 136.5 ▂▁▃▁▇ 

20 

128.0 31.5 122.5 ▂▇▅▂▃ 

P (ppm) 31.3 15.4 33.0 ▇▃▇▂▂ 29.3 18.4 24.0 ▇▃▁▂▁ 

pH (-) 7.39 0.51 7.20 ▅▇▁▁▆ 7.58 0.79 7.75 ▇▃▂▅▇ 

OM (%) 7.3 0.64 7.55 ▇▂▆▆▂ 6.72 0.70 6.75 ▁▃▇▃▃ 
a n: number of samples 

Similarly, Table 3 presents the descriptive statistics for one of the variables for each PSS before 
and after the general filtering procedure. The filtering procedure consistently reduced the SDs 
and differences between the means and medians of each data source. The comparison of the 
inline histograms only indicated minor changes in the data distribution, suggesting a successful 
removal of outliers while maintaining the integrity of the data distribution.  

Table 3 Example of descriptive statistics for the elevation raster data and one variable from each PSS before (raw) and 
after applying the filtering procedure steps from Karp et al. (2022) (a hyphen indicates that the filtering procedure was not 

applied to that dataset) 

Variable 
Raw data Filtered data 

Mean Standard 
Deviation Median Histogram Mean Standard 

Deviation Median Histogram 

Resistance to 
penetration (kPa) from  
0.01-0.10 m 

219.2 215.9 172.0 ▇▃▁▁▁ 174.6 63.6 168.3 ▆▇▅▁▁ 

Electromagnetic 
Induction  ECₐ (mS⋅m-1) 
from 0-0.75 m  

248.4 4.7 247.2 ▇▃▁▁▁ 248.0 3.3 247.2 ▅▇▂▁▁ 

Ground Penetrating 
Radar  
Instantaneous amplitude 
(-) 0.00-0.10 m 

250531.7 148691.5 214862.9 ▇▁▁▁▁ 223260.4 60323.4 209760.1 ▇▇▂▁▁ 

γ-ray ⁴⁰K (count rate) 294.2 148.5 283.5 ▅▇▃▁▁ 286.5 35.6 285.2 ▁▂▇▅▁ 

Elevation (m) 1022.6 4.2 1022.6 ▂▆▇▆▇ - - - - 

A lower SD and mean ratio indicate a lower elevation and ECa variance than other variables. 
The evaluation of maps from these two data sources (not included in this paper) still showed 
that these variables represented this field’s known spatial variability. Such observation highlights 
the importance of standardizing the dataset to zero mean and unit variance, as ML algorithms 
can be sensitive to the magnitude and variance of the data, which could result in reduced 
importance of t the two variables mentioned above. 
Representative training and validation datasets are essential to guarantee the model's validity 
and analysis of the results. The descriptive statistics for the same variables from the different 
data sources are presented for the surface resulting from the IDW interpolation of the data 
sources and for the 3.5 ha⋅sample-1 training dataset. Despite some slight differences, the 
descriptive statistics for the training dataset and interpolated surfaces (Table 4) are similar to 
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the ones from the "Filtered data" from Table 3 ("raw data" for elevation). The similarity among 
the descriptive statistics from these datasets indicates that no substantial changes were induced 
through the co-location and interpolation procedures, and reliable datasets were generated to 
achieve the objectives of this study. 
Table 4 Example of descriptive statistics from the 3.5 ha⋅sample-1 co-located training dataset and interpolated surface (15-

meter raster) for elevation and one variable from each PSS  

Variable 

Training Dataset (3.5 ha⋅sample-1) Interpolated Surface 

Mean 
Standard 
Deviatio

n 
Median Histogram Mean Standard 

Deviation Median Histogram 

Resistance to 
penetration (kPa) from  
0.01-0.10 m 

171.4 56.6 167.5 ▃▆▇▂▃ 186.8 59.5 187.3 ▃▇▆▂▁ 

Electromagnetic 
Induction  ECₐ (mS⋅m-

1) from 0-0.75 m  
248.0 3.4 247.0 ▃▇▃▂▃ 247.4 2.8 246.3 ▇▇▃▁▁ 

Ground Penetrating 
Radar  
Instantaneous 
amplitude (-) 0.00-0.10 
m 

202015.3 63791.7 190354.6 ▇▅▁▁▁ 238203.8 45946.2 226345.0 ▃▇▃▁▁ 

γ-ray ⁴⁰K (count rate) 278.5 33.4 283.1 ▃▂▃▇▆ 289.0 22.8 290.5 ▁▁▇▇▁ 

Elevation 1023.1 3.5 1022.5 ▆▂▇▁▇ 1022.4 4.5 1023.2 ▃▆▅▇
▇ 

Correlation analysis 
The collinearity in the predictor variables and the relationships between predictors and the soil 
chemical properties were assessed on the dataset with 0.4 ha⋅sample-1 density. A visual 
inspection of the histograms in Table 3 allows to see that even after filtering, the distribution for 
some of the predictors did not look like a normal distribution. Thus, Spearman's correlation 
coefficient was used instead of Pearson's. The resulting correlations are presented in Fig. 2Fig. 
3.  
The correlations among predictors (Fig. 2) could lead to a lengthy discussion from a geophysical 
and engineering-focused perspective (Karp et al., 2023b). Thus, in the present study, the 
content of Fig. 2 is discussed and interpreted from a modeling perspective.  
Signal responses from different soil layers belonging to the same PSS are often correlated, for 
which subsequent intervals provide higher correlation values (e.g., Penetrometer 0.11 – 0.20 
and 0.21 – 0.30 m). Such behavior is ‘as expected’ since spatial correlation is not limited to its 
most explored dimension (2D). Across data sources, all predictors significantly correlate to one 
or more predictor variables.  
The observed correlation within and across data sources can be seen as a multicollinearity 
issue, which might result in unstable estimation of coefficients and variance inflation, 
consequently affecting the models’ predicting capabilities (Allen, 1997). This known limitation in 
data fusion is commonly handled using feature selection approaches (Ji et al., 2019; Lachgar et 
al., 2024) to remove variables that do not contribute to or negatively impact the models’ 
performance. The present study avoided the removal of predictor variables and entirely relied 
on the potential of some of the chosen ML algorithms to overcome this limitation. For example, 
PLSR reduces the dataset dimension and correlations among predictors through latent 
variables that maximize the explanation of the target variable. RF uses random sampling of 
variables and observations to reduce the overfitting of the model, which can reduce the effect of 
multicollinearity. Without a process that can minimize collinearity among predictors, SVM is the 
most vulnerable to this effect.  
The correlations between the predictors and soil properties are presented separately in Fig. 3 to 
facilitate the visualization and analysis. Except for 238U and slope, all other variables 
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demonstrated a significant correlation with at least one soil property. The 0.21-0.3 m resistance 
to penetration and g-ray count rates for ⁴⁰K and total count rate (CR) presented significant 
correlation with all soil properties. pH and P correlate to the greatest number of predictors, 28 
and 10, respectively. These two soil properties also present absolute correlation values above 
0.5. The highest absolute correlation for pH, P, K, and OM are with "Penetrometer 0.31-0.40" 
(-0.59), "Penetrometer 0.21-0.30" (0.55), "Elevation" (0.44), and "g-ray 40K" (-0.32), respectively.  

 
Fig. 2 Spearman's correlogram for all sensors and topography data. Empty cells represent the non-significant correlation 
at a significance level of 0.05. The darker the cell color, the stronger the correlation (positive correlation – blue; negative 

correlation – red). GPR – ground penetrating radar; ECa- apparent electrical conductivity; EM – Electromagnetic Induction 
sensor; CR – count rate. 

No complete agreement between a predictor variable and soil properties was identified. Also, 
each soil property relates to the data sources differently. For instance, pH significantly 
correlates to multiple variables from GPR, while OM to none. In contrast, all soil properties 
correlated to at least three variables from the penetrometer. However, the correlation is stronger 
(absolute values above 0.5 for some depth intervals) for pH and P and weaker for OM and K 
(highest absolute value is 0.33). These observations lead to the conclusion that no single 
sensor can measure or predict all soil properties, a well-known behavior when mapping soil 
variability with PSS (Adamchuk et al., 2011; Gebbers, 2018). 
Upon further inspection of the interpolated surfaces, all predictors clearly defined different 
aspects of the known variability of the study field, except for 238U and 137Cs, whose maps mainly 
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presented a poorly structured spatial distribution. Since 238U did not show a significant 
correlation with any soil property, and while analyzing the g-ray dataset from this field, Karp et 
al. (2023b) observed pure nugget effect experimental variograms for 137Cs and 238U; these two 
nuclides were not used for the model training and predictions.  

 

Fig. 3 Spearman's correlogram matrix for soil properties, all sensors, and topography data. Empty cells represent the non-
significant correlation at a significance level of 0.05. The darker the cell color, the stronger the correlation (positive 

correlation – blue; negative correlation – red). GPR – ground penetrating radar; ECa- apparent electrical conductivity; EM38 
– Electromagnetic Induction sensor; CR – count rate. 

Calibration Results 
The model parameters for a given ML algorithm, sampling density, and soil chemical property 
were tuned, and the best parameters were used to train the calibration models successfully.  
Effect and performance of ML algorithms for a given sampling density and soil property  

The MSE from the ML algorithms were compared using Levene's test. No statistical significance 
(α = 0.05) was identified for a given soil property and sampling design, meaning homogeneity of 
variances in the squared errors from the three ML algorithms. A comparison of MSE and R2 
from Fig. 4 suggests that the multi-objective decision-making approach described above 
demonstrated to be an effective approach to select the most robust ML algorithms (red-
bordered bars in Fig. 4). For example, when using the 3.5 ha⋅sample-1 training dataset for 
predicting K (Fig. 4a), RF and SVM resulted in very similar MSE, while RF was selected due to 
its higher R2.   
SVM and RF emerged as the most robust algorithms for 3 out of 4 soil properties for the original 
and extra-low density sampling designs, respectively (Fig. 4a, c-d). For P, PLSR outperformed 
the other models for both sampling densities (Fig. 4b). Ji et al. (2019) compared the 
performance of ML algorithms (including PLSR, RF, and SVM) to predict soil properties using 
the fusion of soil g-ray, reflectance from visible and near-infrared spectra, ECa from EMI, and 
elevation. The results presented by Ji et al. (2019) indicate that PLSR was often outperformed 
by SVM and RF, which aligns with the results observed in Fig. 4. 
The SVM never emerged as the most robust algorithm for the extra-low density sampling 
design; as previously mentioned, the higher susceptibility of this algorithm to collinearity might 
be contributing to this result. Thus, future research should evaluate how feature selection could 
change the observed results.  
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Fig. 4 Bar-dot plot for the coefficient of determination (R2; bars) and mean squared error (MSE; points) for the 20 validation 
samples comparing partial least squares (PLSR; hatched bars and circle-shaped points), random forest (RF; crosshatched 
bars and triangle-shaped points), and support vector machines (SVM; bars with small dots and square-shaped points) as 

prediction algorithms for plant available potassium (K), phosphorus (P), pH, and soil organic matter (OM) for a given 
sampling density. A red border around a bar indicates the selected model for that sampling density.  

Effect and performance of sampling density on the prediction of the soil properties 

Figs. 5a-d present a focused analysis of the effect of sampling density on predicting soil 
chemical properties. The R2 is reported in the boxes on the left side of the panel, while MSE is 
on the right. Even though Levene’s test results in Figs 5a-d (uppercase letters following the 
MSE values) did not reveal significant differences in the variance of squared residuals between 
the two sampling densities, the performance metrics indicated that calibration models using the 
original sampling density consistently outperformed the extra-low-density. 
According to the results presented in Figs 5a-d, only the predictions for P yielded R2 above 0.5 
for both sampling densities (Fig. 5b). For pH (Fig. 5c), the R2 for the 0.4 ha⋅sample-1 model was 
0.53, while 0.26 for the lower density design. These results for pH already suggest a gain in the 
percentage of the variability that the sensor’s fusion can explain when including more samples. 
This result is ‘as expected’ since adding more samples improves parameter tuning and model 
predictions. Also, with the addition of closer samples (higher sampling density), spatial 
autocorrelation among sampling locations becomes more representative in the training dataset, 
which is not accounted for in the evaluated ML algorithms but affects the model predictions – 
the model overfits to the dataset (Hengl et al., 2018). The models for the original and lower 
density sampling designs accounted for less than 25% and 10%, respectively, of the variability 
in the validation samples for K (Fig. 5a) and OM (Fig. 5d).  
The lower R2 observed for OM (Fig. 5d) could be attributed to the lower variance of this soil 
property in this field (Table 2). While pH also presented a lower variance (Table 2), a stronger 
relationship between the penetrometer variables and pH was observed (Fig. 3), which might 
have contributed to the higher R2 for this soil property. In contrast to OM and pH, K presented a 
higher variance (Table 2). Thus, the resulting R2 for K suggests that calibration models trained 
with the fusion of the five different data sources could not explain more than 24% and 4% of the 
variability of this soil property in the validation samples when using the 0.4 and 3.5 ha⋅sample-1 
sampling densities, respectively.  
The above observations regarding the modes’ performance can also be observed in the 
predicted surfaces. Fig 6 compares thematic maps from the data fusion calibration models with 
the ordinary kriging (OK) interpolation of the 0.4 ha⋅sample-1 sampling density. A visual 
comparison of the surfaces for P and pH revealed that maps originated from ML models for both 
sampling densities (P – Figs. 6g and i; pH – Figs. 6l and n) agree strongly with their respective 
OK maps (P – Fig. 6f; pH – Fig 6k). In contrast, such an agreement is weaker for K and OM, 
with the original sampling design models predicting surfaces closer to OK rather than for the 
extra-low sampling design models. Overall, the observed agreements between the ML predicted 
surfaces with OK interpolation suggests that the co-location procedures for the training and 
prediction dataset were effective.  
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Considering that the fused dataset contained 37 variables, some might negatively affect the 
model’s predictability, as could the different collection dates for the data sources. Again, this 
indicates that future work should explore feature selection approaches to reduce the number or 
better select predictors or data sources. 

 
Fig. 5 Box plots for the prediction errors for plant-available potassium (K), phosphorus (P), pH, and soil organic matter 
(OM). Results from the predictions based on the fusion of all data sources for two sampling densities, 0.4 and 3.5 ha⋅ 

sample-1, are indicated by a capital letter and a color. While partial least squares (PLSR), random forest (RF), and support 
vector machines (SVM) were tested for each scenario, only the best-performing algorithms are presented (refer to Fig. 4 for 

all algorithms). MSE followed by different uppercase letters differ significantly at α = 0.05 within the panel (between 
sampling densities), and different lowercase letters for the same sampling density but between "No Spatial Smoothing" 

and "IDW Moving Window" 

Effect of an IDW smoothing approach in the surface predicted by a non-spatial ML algorithm 

Although research results have supported that adding coordinates, sampling distances, and 
neighboring observations as covariates can improve the prediction capability of the ML 
algorithms (Hengl et al., 2018; Pereira et al., 2022; Sekulić et al., 2020; Talebi et al., 2022), 
such approaches were not explored in the current study, as a focus was given to calibrating the 
fused dataset.  
None of the evaluated ML algorithms accounted for the spatial component in the data; the 
predicted surfaces can present spatial outliers. This behavior can be observed in the maps for 
“3.5 ha⋅sample-1” and “0.4 ha⋅sample-1” in Figs 6. From a practical perspective, such spatial 
inconsistency in the maps might affect prescription maps. Therefore, an IDW smoothing 
approach was evaluated, and the results are presented in Fig. 5e-h. Since none of the MSE 
values were followed by a different lowercase letter, Levene’s test did not indicate a significant 
difference (α = 0.05) in the MSE after applying the IDW Smoothing Window for a given sampling 
density. However, the smoothing approach often worsens the performance metrics (Figs. 5e-h) 
compared to the standalone model predictions (Figs. 5a-d). A visual comparison of the 
smoothed maps and standalone predictions (Fig. 6) suggests that the proposed smoothing 
approach reduced spatial inconsistencies.  
For a reduction of 90% in the number of samples, using ML algorithms and the fusion of PSS 
and topography data presented some potential to predict the spatial variability of P and pH 
when using extra-low sampling density. From the perspective of a PA practitioner, such results 
might be more appealing than those obtained for the 0.4 ha⋅sample-1 design. It is important to 
note that these results are applicable for the specific experimental site. The effect of sampling 
density on the model performance will vary for different fields and soil properties, as it depends 
on the spatial structure of the specific site and dataset. Thus, the results presented above 
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should be generalized with care. Also, there are still limitations on the prediction of OM and K, 
which are also crucial for fertility management purposes. Therefore, further evaluations should 
be performed using different combinations of data sources and adding additional data sources 
that can help predict these two chemical properties.  

 
Fig. 6 Thematic maps for plant-available potassium (K; a-e), phosphorus (P; f-j), pH (k-o), and soil organic matter (OM; p-t) 

from the interpolation of the 0.4 ha⋅sample-1using ordinary kriging (first column of maps), and calibration model 
predictions for the 3.5 ha⋅sample-1 (second and third columns) and 0.4 ha⋅sample-1 (fourth and fifth columns) before and 

after the “IDW Moving Window” (IDW MW) was applied  

Conclusion 
Although significant correlations between soil chemical properties and PSS and topography 
data were observed, no complete agreement was observed. The complex relationship between 
the properties measured by the sensors and the soil variables, as previously reported by other 
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researchers, is a possible explanation for this behavior. These results indicate a potential 
benefit of fusing the data sources.  
The machine learning algorithms evaluated did not present statistically significant differences 
when the squared residuals were compared using Levene’s test. However, the use of a multi-
objective decision making logic highlighted some differences between the models and 
presented to be an effective approach to select the best predictor for the two training datasets 
(0.4 and 3.5 ha⋅sample-1).  
No statistical difference was observed when comparing the residuals of the most robust ML 
algorithms from the two sampling densities evaluated. However, the performance metrics 
indicated that the higher-density dataset provided better predictions. The models for P and pH 
provided better results than those for OM and K, which models (especially when using the 
lower-density design) did not account for more than 25% of the variability in the validation 
dataset. Overall, a visual agreement between some of the predicted surfaces and OK 
interpolation (more evident for P and pH) was observed suggesting that the co-location 
procedures adopted for training and prediction were effective. 
The ML algorithms evaluated did not consider the spatial component in the data, creating spatial 
outliers in the predicted surfaces. To overcome this limitation, an IDW-based moving window 
was evaluated, but while it reduced spatial inconsistencies, it slightly worsened the model 
performance metrics.  
The results presented the potential of calibrating PSS and topography data fusion to predict soil 
chemical properties. However, this needs to be further explored, especially regarding the 
different combinations of the data sources.   
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