
 

The authors are solely responsible for the content of this paper, which is not a refereed publication. Citation of this work should state 
that it is from the Proceedings of the 16th International Conference on Precision Agriculture. EXAMPLE: Last Name, A. B. & Coauthor, 
C. D. (2024). Title of paper. In Proceedings of the 16th International Conference on Precision Agriculture (unpaginated, online). 
Monticello, IL: International Society of Precision Agriculture.  

 

Computer vision by UAVs for estimate soybean population across different 
physiological growth stages and sowing speeds 

 
Flávia Luize Pereira de Souzaa*,, Luciano Shozo Shiratsuchi b∗, Haiying Taoa*, Maurício Acconcia Diasb, 

Marcelo Rodrigues Barbosa Júniord,  Tri Deri Setiyonoe,  Sérgio Camposf, 
aDepartment of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT, USA 

bPrecisionAgX LLC, PO box 9617, College Station, TX, USA 
cUniversity Center of Hermínio Ometto Foundation, Araras, Brazil 

dDepartment of Horticulture, University of Georgia, Tifton, GA, USA 
eSchool of Plant, Environmental and Soil Sciences, Louisiana State University, Baton Rouge, LA, USA 

fSão Paulo State University, Botucatu, SP, Brazil 
∗Corresponding author 

 

A paper from the Proceedings of the 
16th International Conference on Precision Agriculture 

21-24 July 2024 
Manhattan, Kansas, United States 

 
Abstract.  
Soybean (Glycine max (Linnaeus) Merrill) production in the United States plays a crucial role in 
agriculture, occupying a considerable amount of cultivated land. However, the costs associated 
with soybean production have shown a notable increase in recent years, with seed-related 
expenses accounting for a significant proportion of the total. This increase in costs is attributed to 
a number of factors, including the introduction of patented and protected genetic traits, as well as 
inflationary pressures. Accurate counting of the number of soybean plants per unit area is 
essential for monitoring emergence and losses in plant population density, playing a critical role 
in agricultural science and practice. However, traditional manual counting methods are inefficient 
and subject to inaccuracies, due to variables such as plant density, limitations in human visual 
perception and the representativeness of the samples collected. This study investigated the 
feasibility of using Unmanned Aerial Vehicle (UAV) to monitor the population density of soybean 
plants at different phenological stages. The experiment was conducted at Ben Hur Research 
Farm, located in the southern United States, using UAV images and advanced image processing 
techniques to count plants. The results showed that the VC phenological stage had the highest 
accuracy, due to the increased visibility of the plants as they grow. In addition, the influence of 
sowing speed on plant counting accuracy was examined. It was observed that increasing the 
sowing speed resulted in a decrease in the model's accuracy, due to the greater overlap between 
plants. However, when excluding overlapping plants, the accuracy of manual counting using the 
UAV image was high at the VC stage. This project contributes to the advancement of scientific 
knowledge by providing insights into the dynamics between soybean phenological stages, sowing 
speed and plant counting techniques. The integrated approach using UAV and image processing 
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technologies offers an effective way to optimize plant counting in the soybean crop, providing 
valuable information to improve agricultural practices and maximize production. These results not 
only enrich the scientific literature, but also have significant practical implications for precision 
agriculture and crop management 
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1. Introduction 
 

Soybeans (Glycine max) are crucial to US agriculture, covering 36.8 million hectares in 
2022 (USDA-NASS, 2022). Seed costs, which have risen over 200% from 2000 to 2021, now 
account for 32% of production expenses due to patented traits, genetic improvements, and 
inflation (Bergada et al., 2015; Chen; Wiatrak, 2011; Lee et al., 2008; USDA-NASS, 2022). 

Manual plant density assessments are time-consuming and inaccurate (Li et al., 2019; Xu 
et al., 2020; Wei and Molin, 2020). UAVs offer a scalable solution for monitoring plant populations 
(Li, Wang, and Huang, 2022).While digital imaging for plant stands varies by crop (Pathak et al., 
2022), UAV technology shows promise in soybean assessments. Studies like Yang et al. (2024) 
and Randelović et al. (2020) have used UAV images and advanced algorithms for detecting 
soybean seedlings, though plant overlap at high densities presents challenges. 

Seeding speed affects plant distribution and operational capacity (Bortoli, 2021; Bertelli et 
al., 2016; Pacheco et al., 1996). Improved methods for stand evaluation are needed for high-
density crops like soybeans (Pathak et al., 2022). This study explores the interplay between 
soybean growth stages, seeding speed, UAV imaging, and plant counting to optimize plant 
counting efficiency and improve agricultural practices. 

 
2. Materials and Methods 

The experiment took place at the Ben Hur Research Farm, Baton Rouge, Louisiana, 8 km 
south of the LSU campus. The region's humid subtropical climate is suitable for agricultural 
research. Soybeans were sown on May 19, 2023, at three speeds: 1.1 m/s, 1.6 m/s, and 2.2 m/s, 
with four rows per speed, totaling 12 rows over 0.13 hectares. A randomized design with 60 
samples (each 1 meter wide) was used. The variety planted was Roundup Ready 2 Xtend, at 
326,000 seeds per hectare, with 0.99 m row spacing, following a corn crop. 

Data collection occurred at the cotyledon (VC), first node (V1), and second node (V2) 
stages, as per Fehr and Caviness (1977), chosen to ensure full plant emergence while minimizing 
overlap (Matias et al., 2020; Ranđelović et al., 2020; Yang et al., 2024). Images were captured 
using a DJI Matrice 300 UAV with a 20 MP Zenmuse H20 RGB camera at 15 m altitude, achieving 
a 0.5 cm GSD and 80% overlap. Collections occurred at the VC stage (May 29, 2023), V1 stage 
(June 2, 2023), and V2 stage (June 6, 2023), between 9:30 a.m. and 2:30 p.m. under clear skies. 

Image processing was conducted at LSU and UConn using Agisoft Metashape 2.1.1 for 
orthomosaic creation and QGIS 3.28.11 for sample delineation. The R software environment 
(version 4.3.1) facilitated area extraction. The FIELDimageR package in R, utilizing EBImage, 
was employed for plant population analysis. Vegetation indices were used to filter non-crop 
elements (Ranđelović et al., 2020; Matias et al., 2020). Automated plant counting was performed 
with the Fieldobject package in R, validated against manual counts. Model performance was 
evaluated using the coefficient of determination (R²) and Mean Absolute Error (MAE) to compare 
UAV estimates with manual counts. 

 
3. Results and Discussion 

The analysis of orthomosaic cutouts revealed that increased sowing speeds resulted in 
fewer plants observed in the field. At 1.1 m/s, the number of plants per sample ranged from 4 to 
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30, which was higher than at 1.6 m/s and 2.2 m/s, indicating a negative correlation between 
sowing speed and plant count. In the orthomosaic cutouts, fewer plants were counted due to 
overlap, affecting the accuracy of manual counts (Table 1). This suggests that higher sowing 
speeds may cause seeds to fall unevenly, impacting plant emergence and distribution. 

 
Table 6 - The Mean Absolute Error (MAE) between the number of plants estimated in the orthomosaic cut-outs and 

the number of plants counted manually in the field and in the orthomosaic cut-outs for each vegetative stage. 

 
 
Data collected at various growth stages allowed for a comprehensive assessment of 

soybean plant density. The Green Leaf Index (GLI) was the most effective vegetation index for 
plant count estimation, showing the lowest MAE across all stages: VC (MAE = 0.057), V1 (MAE 
= 0.096), and V2 (MAE = 0.195). The accuracy of plant count estimates decreased with advancing 
growth stages, with the highest accuracy at the VC stage (R² = 0.92) and lowest at the V2 stage 
(R² = 0.46). This decline is due to increased plant overlap at later stages, complicating individual 
plant identification. 

Accurate plant counting is challenged by overlapping plants and uneven emergence 
(García-Martínez et al., 2020). This study highlighted the impact of phenological stages and 
sowing speeds on plant count accuracy using orthomosaic cutouts. Higher sowing speeds and 
advanced growth stages decreased accuracy due to increased overlap (Kurachi et al., 1989). 
Optimal image acquisition times and sowing speeds are crucial for minimizing errors (Luna and 
Lobo, 2016; De Souza et al., 2017). 

Overlapping leaves and contact between plants in later growth stages reduced the visible 
area for individual identification, leading to underestimation of plant counts (Keller et al., 2018; 
García-Martínez et al., 2020). Early stages (VC) showed lower error rates, indicating better 
precision. However, early-stage imaging might face challenges due to lower plant emergence and 
smaller plant size, complicating identification. 

This research underscores the importance of selecting appropriate phenological stages 
and sowing speeds for accurate plant count estimation. Incorporating vegetation indices and 
UAV-based image processing can enhance accuracy, though challenges like overlap remain 
significant (Ranđelović et al., 2020). Accurate plant population estimates are vital for assessing 
emergence uniformity and overall productivity, with implications for current and future crop 
management. 

Growth 
Stage 

Sowing speeds 
(mph) 

MAE 
(compare by number of plants in 

the field) 

MAE 
(number of plants in the 
orthomosaic cut-outs) 

VC 3 0.333 0.025 

VC 4 0.366 0.038 

VC 5 0.382 0.102 

V1 3 0.550 0.069 

V1 4 0.561 0.113 

V1 5 0.590 0.116 

V2 3 0.598 0.176 

V2 4 0.629 0.186 

V2 5 0.659 0.239 
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The findings suggest that while the current methodology is robust, improvements are 
needed to address limitations such as early-stage overlap in dense plant populations. This 
approach, although focused on soybeans, can be adapted for other crops, considering specific 
growth characteristics to optimize estimation accuracy. 

 
5. Conclusion 

This study explored how soybean phenological stage and sowing speed impact plant 
number estimation. By integrating these factors, correlations between estimates from 
orthomosaic cutouts and actual field observations were established. Results underscore the 
critical importance of carefully selecting phenological stages and optimal image capture times, 
considering specific environmental conditions like sowing speed. 

The VC stage and a sowing speed of 1.1 m/s showed superior accuracy due to increased 
vegetation overlap as plants mature, diminishing estimation precision. Higher speeds led to 
decreased homogeneity, affecting area coverage and potentially resulting in plant overlap. 
Despite these challenges, manual counts via orthomosaic cutouts achieved high accuracy at the 
VC stage and 1.1 m/s speed.This research deepens our understanding of soybean phenological 
stage, sowing speed, and plant number estimation in orthomosaics, paving the way for future 
studies and practical applications in agriculture. 
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