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Abstract.  
Precision agriculture (PA) has emerged as a fundamental approach in contemporary agricultural 
management, aimed at maximizing efficiency in the use of resources and improving crop 
productivity. The transition to so-called "agriculture 4.0" represents a revolution in the way 
technology is applied in the field, with an emphasis on digital and automated solutions such as 
UAVs (Unmanned Aerial Vehicles). These devices offer new capabilities for capturing high-
resolution images, enabling detailed analysis of agronomic variables at plot level. This study 
focused on evaluating the accuracy of counting soybean plants (Glycine max (Linnaeus) Merrill) 
at different stages of development and sowing speeds, using images obtained by RPAs equipped 
with RGB and multispectral sensors. The project was carried out at Ben Hur Research Farm, 
located in the United States in Baton Rouge, LA, to evaluate the performance of the sensors 
under real conditions, and determine the most efficient sensor for accurately counting soybean 
plants. Through advanced analysis, including Neural Networks and image processing with R 
Language and the FIELDimageR package, this study identified RGB technology as highly 
accurate in classifying the number of soybean plants. However, image processing presented 
challenges in environments with high plant overlap, resulting in reduced accuracy in estimating 
the number of plants. These results highlight the importance of proper sensor selection and timing 
of image capture to obtain accurate plant count estimates in different agronomic conditions. 
Furthermore, they suggest the need to explore new techniques and approaches to improve the 
accuracy of image processing in challenging environments, such as areas with high plant 
population density. These findings have significant implications for the practice of precision 
agriculture, providing valuable insights for efficient crop management, optimizing the use of 
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resources and increasing productivity in soybean crops. The study contributes to the 
advancement of scientific knowledge in this constantly evolving field, paving the way for future 
research and practical applications in modern agriculture. 
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1. Introduction 
 

Precision agriculture (PA) optimizes resource use and maximizes crop productivity 
through advanced information and communication technologies (SBCS, 2021). Agriculture 4.0 
integrates digital technologies like AI, UAVs, GIS, and sensors to enhance agricultural processes 
(Araújo et al., 2021). PA practices improve crop yields, reduce costs, and optimize inputs by 
managing nutrients, pests, weeds, and sowing gaps (Wrigley, 2015; Nukala et al., 2016). UAVs 
with digital cameras are crucial in precision agriculture for crop phenotyping and digital image 
processing (Maes and Steppe, 2019; Valente et al., 2020; Yang, 2020). 

Stand assessments in early soybean growth stages (VC to V3) ensure optimal plant 
populations, facilitating timely replanting if necessary (Carver et al., 2018; Licht, 2020). Delays in 
sowing reduce yield potential (Egli and Cornelius, 2009; Salmeron et al., 2014; Nleya et al., 2020), 
and replanting must balance costs and benefits (Pathak et al., 2022). The optimum agronomic 
plant population (AOPP) for soybeans is about 247,000 plants per hectare (Epler and 
Staggenborg, 2008; Gaspar and Conley, 2015). Manual counting methods, although accurate, 
are labor-intensive and error-prone (Pathak et al., 2022). Advanced technologies like LIDAR, 
high-resolution imaging, and smartphone apps offer precise alternatives (Shi et al., 2013; Jia and 
Krutz, 1992; Shrestha and Steward, 2003; Tang and Tian, 2008; Smith et al., 2019). 

UAVs enable high-resolution imagery for detailed field analysis (Hunt et al., 2005). RGB 
and multispectral cameras on UAVs facilitate vegetation indices like NDVI for crop health 
assessment (Prakash, 2000; Rouse et al., 1974). RGB-derived indices are useful for early-stage 
monitoring and stand counts (Woebbecke et al., 1995; Vong et al., 2021; Fan et al., 2018).This 
study evaluates and compares the accuracy of soybean plant counts using RGB and multispectral 
images to enhance agricultural management and productivity. 

 
2. Materials and Methods 

The experiment was conducted starting May 19, 2023, at Ben Hur Research Farm, Baton 
Rouge, LA, to identify the most efficient sensor for counting young Roundup Ready 2 Xtend 
soybean plants and determining the optimal phenological stage for accurate crop population 
estimation. The experimental area measured 90 x 15 meters, with a sowing rate of 326,000 seeds 
per hectare and row spacing of 0.99 meters. Sowing speeds were 1.1 m/s, 1.6 m/s, and 2.2 m/s, 
with 60 one-meter samples marked for visualization. 

Images were captured using a DJI Matrice 300 UAV with DJI Zenmuse H20 and 
Micasense Red-Edge-MX sensors at three soybean stages: cotyledon (VC), first node (V1), and 
second node (V2). Each stage required one flight per sensor, totaling six flights. The UAV 
operated at 15 meters altitude with 80% overlap, achieving GSDs of 0.5 cm (RGB) and 1.0 cm 
(multispectral). Data processing was conducted at LSU and UConn laboratories. Orthomosaics 
were created using Agisoft Metashape, producing six orthomosaics (three RGB, three 
multispectral). The steps included image addition, alignment, DEM creation, and orthomosaic 
construction. A total of 360 image samples were cropped for analysis. Neural Networks classified 
plant counts using Orange software and pre-trained Inception v3 networks. The analysis involved 
220 selected images. 

The R language and FIELDimageR package were employed for further image analysis. 
FIELDimageR counted plants in each of the 60 marked samples, totaling 360 images. Soil 
removal and vegetation indices were applied during processing to enhance accuracy. Model 
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performance was evaluated using AUC, Precision, Accuracy, Conformal Recall, and F1 Score. 
The estimated plant counts were compared with field counts. Both RGB and multispectral images 
were validated using R² and MAE metrics, comparing UAV-derived estimates with field and 
manual counts. 

 
3. Results and Discussion 

The Neural Network's classification performance for RGB and multispectral images is 
shown in Table 1. The RGB model achieved an AUC of 0.969, an accuracy of 80%, and an F1 
score of 0.803. For multispectral images, the AUC was 0.942, accuracy 71.8%, and F1 score 
0.713. Precision and recall were 82.5% and 80% for RGB, and 71.8% and 70% for multispectral, 
respectively. These results indicate a strong classification ability, although increasing the number 
of images per class could further improve accuracy. The confusion matrices showed that the 
Neural Network had an error rate of 20% for RGB images and 28% for multispectral, 
misclassifying 22 and 31 images, respectively. 

 
Table 1 - Neural Network classification result 

 
 
 
 
Vegetation indices GLI for RGB and CIG for multispectral images were effective for plant 

counting, with MAE values of 0.057 and 0.292, respectively, in the VC stage. These indices 
reduced noise and improved accuracy.Comparisons of plant number estimates from orthomosaic 
images processed with R and manual counts indicated estimation challenges due to plant overlap, 
especially at later growth stages. The model showed the highest accuracy with RGB images at 
the VC stage (R² = 0.38), but overall accuracy was low due to overlap, leading to undercounting. 

Without overlapping, the model's accuracy was high for both RGB and multispectral 
images at the VC stage (R² = 0.92 and 0.72). Accuracy decreased with advancing vegetative 
stages, but remained better in the VC and V1 stages (R² = 0.92 and 0.88, respectively). The 
lowest MAE was achieved with the RGB sensor at the VC stage (MAE = 0.057) under non-
overlapping conditions, as shown in Table 2. 

 
Table 2 - Mean absolute errors (MAE) between the number of plants estimated and the number of plants in the field 

and in the orthomosaic cut-outs for each vegetative stage and for each sensor (RGB and multispectral) 

 
 
 
 
 
 
 
 
Pixel size and plant development stages impacted plant counting accuracy. Larger pixel 

sizes reduced resolution, complicating soil and vegetation differentiation. Despite these 
challenges, the Neural Network showed high accuracy even with overlapping plants and varying 

Model AUC CA F1 Precision Recall 

RGB 0.969 0.800 0.803 0.827 0.800 

Multiespectral 0.942 0.718 0.713 0.718 0.705 

 
Soybean stage 

MAE  

RGB Multispectral 

Field  Orthomosaic Field Orthomosaic 

VC 0.382 0.057 0.519 0.156 

V1 0.464 0.096 0.572 0.152 

V2 0.471 0.195 0.596 0.321 
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resolutions. The RGB sensor outperformed the multispectral sensor due to its higher resolution 
(0.5 cm per pixel), resulting in more accurate counts (R² = 0.92) and lower error (MAE = 0.057). 

Accurate plant stand counts are crucial for evaluating harvest yields and optimizing the 
sowing process, directly affecting crop yield and quality. Factors such as nutrient and water 
availability, sowing depth, herbicide effects, climatic conditions, pest infestations, and sunlight 
exposure significantly influence plant density and uniformity, impacting overall yield and 
production quality. 

 
5. Conclusion 

Explored in the study was the impact of optimal conditions and plant overlap on vegetation 
estimation accuracy. Results underscored the significance of selecting suitable sensors and 
timing for image acquisition. Estimating plants up to the VC stage notably minimized errors. RGB 
technology exhibited high accuracy in soybean plant classification using Neural Networks, 
whereas image processing struggled with accuracy, particularly in environments with dense plant 
overlap, suggesting the need for alternative approaches. 
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