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Abstract. 

This study explores and develops new methodologies for predicting agricultural outcomes, such 
as crop yields, in microclimates characterized by sparse meteorological data. Specifically, it 
focuses on reducing the dimensionality in time series data as a preprocessing step to generate 
more straightforward and more explainable forecast models. Dimensionality reduction helps 
manage large data sets by simplifying the information into more manageable forms without 
significant loss of information. We explore and utilize various 'similarity' metrics, including 
Kullback-Leibler Divergence, Euclidean Distance, Manhattan Distance, Cosine Similarity, 
Pearson Correlation, and Spearman Rank Correlation. These metrics help identify patterns and 
relationships across different microclimate features for locations and seasons (time and space 
dimensions). We analyze continuous, temporally aligned data streams from distinct geographic 
locations to assess the similarity of weather features like temperature, humidity, and cloud cover. 
Our similarity scoring method involves comparing long-term weather patterns to identify common 
traits that might influence crop yields. This information gets used as input for multiple machine 
learning techniques, ranging from small classical models to advanced approaches like Long 
Short-Term Memory networks. The study employs high-dimensional temporal datasets from four 
geographic regions in New Mexico (Otero, Sierra, Doña Ana, and Chaves) as input data, with 
pecan crop yields as the outcome of interest. Our models suggest a predictive link between similar 
microclimates and agricultural outcomes like crop yield. Moving forward, we propose future 
avenues of research to refine these predictive models. We also propose to study a new Mixture 
of Experts architecture, which combines insights from various specialized models to provide more 
precise and localized predictions across different agricultural regions. This research, still in its 
early stages, holds promise for improving forecasting practices in agriculture. 
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Introduction 

Agriculture contributes to an essential part of the global economy, providing resources such as 
food, fiber, and fuel to sustain human life. In places like India, it accounts for 18% of national 
income and 54% of employment (Alston & Pardey, 2014). The success of agricultural endeavors 
is intrinsically linked to many factors, among which climate plays a pivotal role. Climate variables 
such as temperature, humidity, and precipitation significantly influence crop growth, development, 
and yields (Lin, 2007). Therefore, understanding and accurately predicting the relationship 
between climate and agricultural outcomes is vital for optimizing farming practices, improving 
productivity, and guaranteeing food security. 

One of the challenges in agricultural forecasting is the variability of microclimates—localized 
climate conditions that can differ significantly from the broader regional climate. Identifying and 
understanding these microclimates can provide valuable insights into crop performance under 
diverse environmental conditions (Gardner et al., 2021). This study uses similarities between 
geographically distinct microclimates to improve predictive models for agricultural outcomes, 
specifically crop yields. 

Dimensionality reduction in time series data is a preprocessing step to simplify complex datasets, 
making them more manageable and interpretable without substantial information loss. Various 
similarity metrics, including Kullback-Leibler Divergence, Euclidean Distance, Manhattan 
Distance, Cosine Similarity, Pearson Correlation, and Spearman Rank Correlation, are utilized to 
identify patterns and relationships across different microclimate features over both spatial and 
temporal dimensions. 

In this study, we analyze continuous, temporally aligned meteorological data streams from four 
distinct geographic locations to assess the similarity of weather features such as temperature, 
humidity, and cloud cover. We aim to identify common traits that may influence crop yields by 
comparing long-term weather patterns. 

We apply these insights as inputs for various machine learning models, ranging from traditional 
statistical methods to advanced techniques like Long Short-Term Memory (LSTM) neural 
networks. These models can handle complex, high-dimensional data and generate meaningful 
predictions (Klompenburg et al., 2020). The study utilizes high-dimensional temporal datasets 
from four geographic regions in New Mexico (Otero, Sierra, Doña Ana, and Chaves), with pecan 
crop yields as the primary outcome of interest. Despite the limited dataset—22 total outcome 
spanning six years across the top four locations in New Mexico—preliminary models demonstrate 
a predictive relationship between similar microclimates and agricultural outcomes. 

This research is still in its early stages, yet it shows promise for improving forecasting practices 
in agriculture. Future work will focus on refining these predictive models, defining new methods 
for deploying similarity metrics as new dimensions to data and exploring a new Mixture of Experts 
architecture, which integrates insights from specialized models to deliver more accurate and 
localized predictions for different agricultural regions. By advancing our understanding of 
microclimate similarities and their impact on crop yields, this study aims to contribute to the 
development of more reliable and precise agricultural forecasting methods. 

Methods 
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Data Source and Description 

This study's primary datasets are from two distinct sources, each offering unique insights into 
different aspects of agricultural forecasting. The crop yield data, specifically for pecans, were 
sourced from the United States Department of Agriculture's National Agricultural Statistics Service 
(NASS) via their Quick Stats database (https://quickstats.nass.usda.gov/). This repository 
provides detailed, county-level agricultural yield data across various crops, which is recorded 
annually. The sparse amounts of available data motivated the choice of pecan crop yield data, 
making it a prime candidate for finding new methodologies that can open access to farmers with 
less available data for their crops. 

We received the meteorological data from the Open Weather API (https://openweathermap.org/), 
a service that offers extensive meteorological observations updated hourly. This dataset includes 
various weather variables central for agricultural analysis, such as latitude, longitude, dew point, 
perceived temperature, minimum and maximum temperatures, humidity, wind speed, wind 
direction, cloud cover, and a general weather identification code. These features were selected 
for their direct impact on crop growth and yield outcomes, providing a comprehensive 
environmental snapshot for modeling microclimatic effects on agricultural productivity 

 

Fig 1. Microclimate Features 

The study focused on four New Mexico regions: Dona Ana, Chaves, Sierra, and Otero. These 
regions were selected based on the availability of longer-spanning yield data. While still sparse, 
these locations had the most yield data available for pecans. The choice of these locations also 
allows for a diverse examination of microclimatic impacts across different geographic profiles, 
enhancing the generalizability of the forecasting models developed. A graphic visualization of 
these feature with a normalization applied to each feature can be seen in Figure 1. 
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The graph below in Figure 2 illustrates the distribution of data entries available for each county, 
revealing the extent of data coverage and the basis for comparative analysis across the regions. 
Dona Ana leads with seven entries, Chaves with six, Sierra with five, and Otero with four, 
culminating in 22 data points. 

This data selection approach helps guarantee that the developed models are grounded in reliable 
datasets, facilitating 
accurate predictions and 
insights into the intricate 
relationship between 
weather conditions and 
agricultural outputs. 

Temporal Alignment and 
Feature Selection 

Precise temporal alignment 
of the four meteorological 
data streams was critical due 
to the sensitivity of similarity 
scores to timing 
discrepancies (Xu & Beard, 
2021). Even a single day's 
misalignment could 
significantly distort the 
perceived similarities 
between the locations. 
Additionally, some weather features exhibited substantial data gaps, with less than 60% data 
availability. Features with insufficient data, including visibility, wind gusts, and various precipitation 
measurements (rain one hour, rain three hours, snow one hour, snow three hours), were excluded 
from the analysis to maintain robustness and reliability. 

Yield Data Preparation 

The yield data required minimal cleaning, as the county and the yield measured in pounds per 
acre were the primary variables of interest. This straightforward dataset allowed us to focus on 
analyzing the meteorological influences without the complication of extraneous data points. 

Dataset Construction for Model Building 

To find the optimal combination of features for predictive accuracy, we constructed several 
datasets to fit the needs of the different predictive models: 

• Dataset 1: This dataset contains pecan yields from two counties with similarity scores 
derived from various metrics, aiming to directly link microclimate similarities with yield 
outcomes. It consists of 198 county-to-county comparisons based on seven similarity 
metrics, with rows containing mostly empty or infinite values removed. The dataset 
features 15 columns: 13 for each weather-features similarity score, one column for the 
label of each score, and another for the labels identifying the county pairs. The output 
shape is (198,), representing the yield values corresponding to the county comparisons. 

• Dataset 2: We processed the meteorological data by averaging each feature over the 
24-hour periods within each day, reducing the total data instances from 192,840 to 
2,557. The input shape is (2557, 17), where '2557' denotes the daily aggregated 
instances, and '17' represents the features: 16 are daily meteorological data and one is 
the averaged similarity score for that location. The output shape (2557,) corresponds to 

Fig 2. Number of Yield Entries By New Mexico County  
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the annual yield of each location. Data normalization was performed using Min-Max 
scaling to ensure all features are proportionally scaled between 0 and 1, improving 
model learning efficiency. 

• Dataset 3: This dataset consolidates an entire year's worth of meteorological data into a 
single array for each location, paired with the respective annual yield. The input has a final 
shape of (22, 122,976), with '22' representing the number of years covered for the four 
locations, and '122,976' the total count of weather features for the year, flattened into an 
array. The output shape is (22,), indicating the yield values for each year. Min-max scaling 
was also applied here to normalize the data, aiming to improve model performance by 
standardizing feature scales. 

Similarity Scoring 

Seven similarity scoring metrics were employed to assess the relationships between 
meteorological data across diverse geographic locations in New Mexico. These metrics fall into 
three categories: vector-based similarities, correlation-based similarities, and information-
theoretic similarity. Each category and metric was chosen based on its potential to uncover 
meaningful patterns within the data that are relevant to predicting agricultural outcomes like crop 
yields. 

Vector-Based Similarities: 

Cosine Similarity: This metric measures the cosine of the angle between two vectors, 
emphasizing their orientation rather than magnitude. It is instrumental in environments where the 
scale of data varies significantly, but the direction of data points is more critical for similarity. In 
weather data, where absolute values might differ but trends over time align, cosine similarity can 
effectively show these parallel patterns (Zhu & Zhang, 2020). 

Euclidean Distance: Euclidean Distance measures the straight-line distance between two points 
in Euclidean space and is commonly used to detect fine-grained differences in data like 
temperature or humidity levels. However, in high-dimensional data spaces, this metric can 
become less effective as the 'curse of dimensionality' causes distances between points to become 
uniformly similar, thereby potentially distorting true distances and diminishing the metric's ability 
to discern distinct data points effectively (Steinbach et al, Nd). 

Manhattan Distance: This metric computes the sum of the absolute differences between 
coordinates in a vector space, which can be particularly effective in meteorological forecast 
analysis where each dimension—representing different forecast parameters—contributes to the 
overall quality assessment. By emphasizing variability across dimensions rather than the diagonal 
path, Manhattan Distance provides a robust metric that is less influenced by extreme variations 
in any single dimension, making it suitable for evaluating the complexity of weather forecasts 
(Stein, 2011). 

Correlation-Based Similarities: 

Pearson Correlation Coefficient: This metric measures the linear relationship between datasets 
and is effectively applied in various scientific studies, including meteorological parameter analysis 
for solar energy prediction. It has proven useful in identifying key weather parameters that 
significantly correlate with solar power generation, such as air temperature and cloud opacity. 
While Pearson Correlation is valuable for determining linear associations, it's important to 
consider the nature of the data, as certain distributions or extreme values can influence the 
outcomes of this statistical method (Tan et al., 2024). 

Spearman Rank Correlation: This non-parametric measure assesses how well the relationship 
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between two variables can be described using a monotonic function. It is especially suitable for 
meteorological data as it does not assume a normal distribution and is less sensitive to outliers, 
thus providing a more robust analysis of ordinal or ranked data. 

Kendall Tau Rank Correlation: Kendall Tau Rank Correlation, like Spearman, is effective for 
analyzing data with ties or ordinal nature, making it suitable for meteorological data that is often 
categorized or ranked, such as wind speed ranges. In contexts like those studied by Ngah 
Nasaruddin et al. (2021), where weather conditions like temperature and humidity are correlated 
with energy consumption, understanding the relationships between ranked or grouped data is key 
for accurate analysis and forecasting. 

Information Theoretic Similarity: 

Kullback-Leibler Divergence: Kullback-Leibler Divergence quantifies the divergence between 
one probability distribution and another, making it a valuable measure for assessing the 'distance' 
between different distributions, such as those in meteorological phenomena (Weijs et al., 2010). 
While insightful, its asymmetric nature does imply that care must be taken when interpreting 
results, especially considering its susceptibility to infinite values when comparing against zero 
probabilities. 

Applicability and Observations 

Our study utilized these metrics across 546 observations, calculated by evaluating each of the 
seven metrics across thirteen features for six location pairs. Our comprehensive exploration 
aimed to identify the most predictive features and similarity measures, enhancing the model's 
ability to forecast crop yields while reducing data dimensionality. 

Correlation-based metrics (Pearson, Spearman, and Kendall Tau) generally proved the most 
effective, capturing the linear and ordinal relationships necessary for predicting agricultural 
outcomes. These metrics help to reveal how tightly linked meteorological variables are across 
different regions, which aids in understanding how similar weather patterns could predict similar 
crop yields. 

Conversely, while applicable in specific contexts, vector-based metrics showed variable 
effectiveness. Euclidean and Manhattan distances were particularly good at highlighting absolute 
differences in climate data, which could be critical when precise measurements affect crop 
outcomes. However, their sensitivity to outliers and the measurement scale could have improved 
their utility in our analysis. 

Kullback-Leibler Divergence offered little insight into the distributional differences between data 
sets. It was impractical because it tends to produce infinite values when encountering zeros in 
the data, which could occur with certain weather variables. 

Visual Representation and Further Analysis 

To visually represent the effectiveness and distinctions between these metrics, we included a 
parallel coordinate graph in Figure 3 below that illustrates the degree of similarity each method 
found when analyzing each geographic location against each other. This visualization helps 
quickly identify metrics most informative for specific features and regions, providing a clear path 
for model refinement. By integrating these similarity scores into our predictive models, we aim to 
deepen our understanding of how microclimate characteristics influence pecan yields. 
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Figure 3. Dimensionality Reduction from Similarity Scores 

Data Pipeline 

In developing our predictive models, we implemented a strategic approach to data partitioning to 
optimize model training, validation, and testing. The datasets were systematically divided to 
guarantee robust training and accurate evaluation while preventing overfitting. 

Data Splitting Strategy 

Standard Split for Model Development: For most models, the data was partitioned into three 
segments: 80% for training, 16% for validation, and 4% for testing. This distribution was chosen 
based on the following considerations: 

Training Data (80%): This substantial portion allows the models to learn as comprehensively as 
possible from various examples, covering a more comprehensive range of scenarios and 
variability within the data. A more extensive training set is essential for complex models, especially 
in cases involving nuanced meteorological data where the patterns might take time to appear. 

Validation Data (16%): Validation is an intermediate check during model training. It is used to fine-
tune model parameters, adjust learning rates, and make decisions about model iterations. This 
relatively large validation set confirms that the model generalizes well over different data sets and 
helps mitigate the overfitting problem. 

Testing Data (4%): The testing set is smaller, as it is used solely to evaluate the model's 
performance after the model parameters have been finalized. This phase is critical as it objectively 
evaluates a model's predictive power on unseen data, reflecting its potential real-world 
performance. 

Adjusted Split for Specific Models: Some models, notably simpler, did not require a separate 
validation set. For these models, we split the data into 80% for training and 20% for testing. The 
rationale for this adjusted split includes. Increased Testing Data (20%): Providing more data for 
testing allows for a more thorough evaluation of the model's performance across a broader set of 
unseen examples. This is particularly important for simpler models ensure their simpler 
hypotheses remain under varied conditions. The validation step can be omitted in models where 
hyperparameter tuning is minimal or unnecessary. The omission of the validation step typically 
applies to less complex models or where the risk of overfitting is lower due to the algorithm's 
nature or the dataset's scale. 

Implications of Data Splitting 
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The chosen data partitioning strategies were pivotal in balancing the need for thorough training 
and the necessity of unbiased model evaluation. This approach maximizes learning from the 
available data and maintains the integrity and reliability of the model evaluation process. By 
strategically allocating data to training, validation, and testing phases, we can safeguard that our 
models are well-trained, generalizable, and robust against overfitting, which is vital for deploying 
these models in real-world agricultural forecasting (Gopinath et al., 2021). 

Models 

Baseline Regressor 

In our model evaluation process, we employed a Baseline Regression Model as an initial step, 
which predicts the mean of the training target values. This approach is intended to provide a 
straightforward benchmark for assessing the performance of more complex predictive models. 
However, it's important to recognize, as discussed by Glymour et al. (2005), that while such 
baseline models are useful for establishing a comparative standard, they may also introduce 
biases. Specifically, adjustments for baseline values. Which stresses the importance of careful 
interpretation and application of baseline adjustments in predictive modeling. 

Purpose and Utility 

The primary utility of the Baseline Regressor is to establish a fundamental performance level that 
more sophisticated models must exceed to demonstrate improved predictive power. This is 
especially pertinent in fields requiring nuanced data interpretation, such as predictive modeling in 
agriculture or health sciences. Glymour et al. (2005) cautions that adjustments based on baseline 
model outputs must be critically evaluated to distinguish genuine improvements from those 
attributable to methodological biases, emphasizing the potential for baseline adjustments to 
misrepresent actual effects under certain conditions. 

Methodology 

Normalization: 

Prior to training, our dataset underwent normalization, a data scaling technique where the mean 
value from each feature in the training set was subtracted from its corresponding feature values. 
This standard practice centers the feature distribution around a zero mean, needed for eliminating 
model biases associated with natural variance in the features. Normalization facilitates feature 
comparability on a similar scale, enhancing the stability and performance of learning algorithms. 
This approach is particularly beneficial in complex predictive modeling as highlighted by Ahsan et 
al. (2021), the substantial impact of various data scaling techniques, including normalization, on 
and accuracy of machine learning models. 

Prediction Strategy: The Baseline Regressor's strategy is straightforward—it calculates and 
uses the mean of the target values from the training dataset as the predicted value for all 
instances. This approach, while simplistic, is instrumental in establishing the minimal expected 
performance level for any predictive model. 

Performance Metrics 

Training Time: The Baseline Regressor's simplicity is reflected in its exceptionally short training 
time, recorded at merely 0.0005 seconds running on an AMD Ryzen 9 5950X 16-Core Processor. 
This efficiency shows the model's role as a fundamental benchmark rather than a sophisticated 
predictive tool. 

Root Mean Squared Error (RMSE): The performance of the Baseline Regressor was 
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quantitatively assessed using the RMSE, which measures the average magnitude of the 
prediction errors. The RMSE for the Baseline Regressor was 484.535, indicating the average 
error between the predicted and actual values. This metric provides a reference point for 
evaluating the effectiveness of more advanced models. A significant reduction in RMSE in 
subsequent models would demonstrate the value of incorporating complex algorithms and data 
preprocessing techniques (Kogan et al., 2013). 

Implications 

Using a Baseline Regression is a standard methodological approach in model development. It 
offers a clear benchmark for the predictive accuracy that more sophisticated models must exceed 
(Glymour et al., 2005). By comparing the performance of advanced models against this simple 
baseline, we can more effectively measure the incremental benefits of employing complex 
machine learning techniques and various data preprocessing methods. 

XG Boost (Extreme Gradient Boosting) 

Extreme Gradient Boosting (XG Boost) is a machine-learning algorithm with a gradient-boosting 
framework (Chen & Guestrin, 2016). Our study employed XG Boost for regression tasks to predict 
agricultural yields based on meteorological data (Li et al., 2023). The model operates by 
sequentially building decision trees, with each tree attempting to correct the errors made by its 
predecessors. The final prediction is the weighted sum of the predictions from all trees in the 
ensemble, which improves the model's ability to generalize across complex datasets. 

Model Configuration and Training 

For the control model, we utilized Dataset 3, which includes the entire year's meteorological data 
flattened into an array and matched with corresponding yield data. We optimized the model using 
the following parameters (see Table 1). 

The training of this control setup required 
477.335 seconds on the AMD Ryzen 9 
5950X 16-Core Processor, resulting in a 
Root Mean Squared Error (RMSE) of 
646.427. Surprisingly, this RMSE was 
worse than the simple baseline regressor, 
suggesting that the model might not be 
suited to learn the relatively small dataset 
size (only 22 entries), leading to 
overfitting despite the regularization and 
subsampling strategies. 

Model Optimization Using Similarity 
Metrics 

To explore the potential of using similarity 
metrics to improve model performance, 
we employed Dataset 1. To optimize XG 
Boost's settings for this dataset, a grid 
search over 32,400 parameter 
combinations was conducted across 5-fold cross-validation, totaling 162,000 fits. This exhaustive 
search identified the most influential parameters (see Table 1) (Yang et al., 2020). 

The optimized model trained with these parameters achieved an RMSE of 477.903. The training 
process was remarkably faster, taking only 0.073 seconds, 6538 times quicker than the control 
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model. This significant reduction in training time, combined with a notable improvement in RMSE 
compared to the control (26.07% better than the control model and 1.368% improvement over the 
baseline regressor), suggests that leveraging similarity metrics can be highly beneficial, especially 
in contexts where data is sparse but pattern rich. 

MLP (Multi-Layer Perceptron) 

The Multi-Layer Perceptron (MLP) is a fully connected neural network, a foundational architecture 
in modern machine learning. Each layer in an MLP consists of neurons fully connected to all 
activations in the previous layer, and its outputs are calculated by applying a nonlinear activation 
function to the weighted sums of its inputs. This design allows MLPs to learn complex, nonlinear 
relationships in the data, making them suitable for various predictive modeling tasks (Khan et al., 
2021). 

However, MLPs can struggle with sparse datasets, where the number of data points is limited 
relative to the complexity of the model. Sparse data-trained MLPs often lead to underfitting, where 
the model fails to utilize its full capacity and learns an overly simplified representation of the data. 
This is particularly problematic in high-dimensional data contexts, as highlighted by Krishnan et 
al. (2018), who demonstrated that standard training algorithms for inference networks result in 
underfitting when applied to sparse datasets. 

Model Training and Architecture 

Control Model: The control MLP we trained using Dataset 3 over 1,000 epochs, allowing sufficient 
time for the network to adjust its weights and biases to minimize the prediction error. The training 
was executed on a Nvidia 4090 GPU, resulting in a training time of 45.84 seconds. The 
architecture of the MLP, as outlined in the referenced figure, was designed to balance complexity 
with performance to prevent overfitting while maintaining the capacity to capture significant 
patterns in the data. The control model's final Root Mean Squared Error (RMSE) was 382.851. 

Similarity Score Model: An alternative MLP configuration we trained using Dataset 1. The model 
followed the same architecture as the control but was subjected to a more extended training 
duration of 759.42 seconds due to the nuanced nature of the data it processed. The extended 
training period was necessary to adequately learn from the enriched, yet complex input data 
provided by the similarity scores. This model achieved an RMSE of 366.67, indicating a 24.32% 
improvement in accuracy over the baseline regressor and a 4.23% improvement over the control 
MLP. See Table 2 for more information about the model parameters.
                     

Performance Analysis and Implications  

The improvement in RMSE by the 
similarity score model over both the 
baseline regressor and the control MLP 
shows the potential benefits of 
incorporating processed similarity metrics 
into the training data. This approach 
improves the model's ability to discern and 
generalize from underlying patterns in 
complex meteorological datasets, 
suggesting a promising direction for 
further research. The results advocate for 
continued exploration into optimized 
architectures and training strategies that 
leverage similarity scores to boost 
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predictive performance in sparse data scenarios. By refining the MLP's architecture and training 
on datasets enriched with similarity metrics, we aim to harness further the network's capacity to 
model complex interactions effectively and deliver more accurate predictions for agricultural 
outcomes. 

LSTM (Long Short-Term Memory Networks) 

Long-short-term memory Networks (LSTMs) are specialized Recurrent Neural Networks (RNNs) 
designed to address the vanishing gradient problem commonly encountered in traditional RNNs, 
especially when processing sequences with long-term dependencies. By incorporating memory 
cells that can maintain information in memory for long periods, LSTMs are ideally suited for 
analyzing time-series data or any sequential data where the timing and order of events are critical 
(Lindemann et al., 2021). 

Model Configurations and Training 

Control Model Configuration: 

Dataset: We trained the control LSTM using Dataset 3, which comprises comprehensive year-
long meteorological data transformed into sequences to reflect temporal dynamics. 

Architecture: The network architecture included 20 layers with a high hidden state dimension of 
1280, designed to capture complex patterns and dependencies in the data. This extensive 
network aimed to learn the detailed features presented in the sequential data. 

Training Details: The model training was executed 
on the same Nvidia 4090 GPU, running for 5325 
epochs, which took 525 seconds. Such extensive 
training was necessary to refine the model's weights 
across numerous layers and data points. See Table 3 
for more details.                          
Performance: The final model achieved an RMSE of 
421.519, which serves as a baseline for evaluating 
the effectiveness of LSTM in handling complex time-
series data. 

Similarity Scored Model Configuration: 

Dataset: The Similarity Scored LSTM was trained 
using Dataset 2. 

Optimization Approach: For the similarity-scored 
LSTM, we implemented a custom grid search to 
determine the optimal set of hyperparameters, 
focusing on a model configuration that balances 
performance with computational efficiency. 

Model Training: This model was configured with a more streamlined architecture, consisting of 
only five layers and a hidden size of 128, reflecting a design prioritizing generalization and speed. 
Over 846 models were evaluated during the grid search, with the best-performing model chosen 
based on its RMSE and computational efficiency. 

Training Details: Training took 59.925 seconds, dramatically faster than the control model. This 
demonstrates the benefits of a more optimized model structure in speed without compromising 
the learning capability. See Table 3 for more details. 
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Performance: This optimized model yielded an RMSE of 145.141, demonstrating a substantial 
improvement over the control model with a 70.05% reduction in RMSE compared to the baseline 
regressor and a 65.58% improvement over the control LSTM model. 

Implications and Future Directions 

The significantly improved performance of the similarity-scored LSTM model proves the potential 
of similarity-scoring metrics in meteorological data. The dramatic reduction in training time 
combined with superior prediction accuracy suggests that LSTMs, when properly tuned and 
optimized for specific datasets like those involving similarity metrics, can offer powerful tools for 
predictive analytics in fields requiring sequential data analysis. 

Results 

The results of this study demonstrate advancements in predicting agricultural outcomes through 
the integration of advanced machine learning models and novel data preprocessing techniques. 
By analyzing meteorological data from distinct geographic regions in New Mexico and leveraging 
similarity metrics, we have developed a methodology that improves the predictability of crop yields 
in microclimates with sparse data. Below, we detail the findings from each model employed in the 
study, showing their effectiveness in forecasting pecan yields. For a quick overview of model 
performance, see table 4.  

 Baseline and Baseline Regressor Performance:  

Our baseline model, the baseline regressor, 
yielded an RMSE of 484.535. This initial metric 
set a fundamental benchmark for subsequent 
models, ensuring that any improvement in 
prediction accuracy could be attributed to more 
sophisticated data handling and modeling 
techniques rather than random chance. 

XG Boost Model Insights: 

 Optimized for complex patterns in high-
dimensional temporal data, the XG Boost model 
performed below expectations with an RMSE of 
646.427 on dataset 3. This outcome suggested 
potential overfitting despite the extensive data 
and regularization efforts. However, when 
retrained with similarity metrics, the model 
achieved a more promising RMSE of 477.903. 
This improvement reveals the value of 
incorporating similarity scores to enhance 
model responsiveness to subtle patterns in the 
data. 

MLP Model Achievements: 

The MLP models demonstrated a marked improvement in predictive accuracy. The control MLP 
model achieved an RMSE of 382.851, while the model utilizing similarity scores from dataset 1 
further reduced the RMSE to 366.67. The similarity scored MLP represents a 24.32% 
improvement over the baseline regressor. 

LSTM Model Performance: 
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The LSTM models showcased the most significant advancements. The control LSTM, with a deep 
architecture of 20 layers, initially recorded an RMSE of 421.519. Optimization through a custom 
grid search tailored for similarity metrics led to a dramatic improvement, with the similarity-scored 
model (5 layers, hidden size of 128) achieving an RMSE of 145.141. This result is a 70.05% 
improvement over our baseline and a 65.58% improvement over the control LSTM model, 
demonstrating the LSTM's capability to handle long-term dependencies in sequential data 
effectively. 

Conclusion 

This study aimed to improve the predictive accuracy of agricultural outcomes in microclimates 
characterized by sparse meteorological data. By employing advanced machine learning 
techniques and innovative data preprocessing methods, including various similarity metrics, we 
have developed models that improve the forecast of crop yields, specifically pecan yields in New 
Mexico. 

Our approach centered on integrating dimensionality reduction and similarity scoring to effectively 
handle and interpret high-dimensional temporal data streams from distinct geographic locations. 
Through analysis and modeling, we demonstrated that machine learning models, particularly 
those equipped with mechanisms to capture and analyze complex, sequential data patterns, such 
as LSTM networks, are exceptionally potent in this context. 

The results were compelling, yet further research should be done with larger datasets to gain 
stronger statistical insights into the true effectiveness of similarity-scored models. The LSTM 
models optimized with similarity metrics improved remarkably in predictive accuracy, with a 
reduced RMSE by over 70% compared to a simple baseline regressor. This improvement shows 
the efficacy of the tailored data preprocessing techniques when dealing with sparse data. 

Moreover, the study revealed the importance of model choice and parameter optimization in 
achieving high prediction accuracy. While the XG Boost and MLP models showed notable 
improvements with the integration of similarity scores, the LSTM models displayed superior 
capability in leveraging the temporal dynamics of the data, suggesting a promising direction for 
future research in agricultural forecasting and other related fields. 

Introducing a Mixture of Experts architecture could refine the predictions by combining the 
strengths of various specialized models, potentially leading to even more robust and localized 
predictive insights. Expanding this methodology to other regions and crop types could help 
generalize the findings and increase the models' applicability and impact. 

In conclusion, this research further advances our understanding of the predictive relationships 
between microclimate variables and agricultural outputs and contributes to the broader field of 
precision agriculture. By improving forecast accuracy, this work aids in optimizing farming 
practices, enhancing productivity, and ensuring food security in the face of climatic variability, thus 
supporting sustainable agriculture. 
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