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Abstract 
The effective management of agricultural systems relies on the utilization of accurate data 
collection techniques to analyze essential crop attributes to enhance productivity and ensure 
profits. Data collection procedures for specialty horticultural crops are mostly subjective, time 
consuming and may not be accurate for management decisions in both phenotypic studies and 
crop production. Reliable and repeatable standard methods are therefore needed to capture and 
calculate attributes of horticultural crops using agricultural systems technology, as well as develop 
automated agricultural systems. The objective of this research was to develop a standard method 
for vegetation coverage specific blackberry flower density estimation with unmanned aerial 
vehicle (UAV) remote sensing. The study was conducted at the University of Arkansas Fruit 
Research Station at Clarksville, AR. The UAV captured 1,894 images in the visible spectrum for 
image processing. In total, 123 pictures were selected from dataset to determine blackberry plots 
for image analysis. The image processing utilized ImageJ software for segmenting floral and 
vegetative coverage to calculate Flower-Vegetation Ratio (FVR). Significant variance in flower 
density across different plots were observed, with an FVR correlation of 19.44% and a p-value 
0.047, indicating an increase in flower count with increasing vegetation coverage. With a ground 
sampling distance of 0.32cm, there was no statistically significant difference between FVR by 
area (cm2) and percent coverage (%). A Pearson correlation analysis showed correlation 
coefficient (r) of 0.675 between FVR and visual estimates. The practical application of UAVs in 
detailed monitoring of specialty crops demonstrates a significant advancement over conventional 
methods, offering reliable and applicable data that could refine crop management and breeding 
strategies. 
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Introduction 
Agricultural systems require timely data collection and interpretation to enable farmers to make 
management decisions that are accurate and not subject to misinterpretation. Precision 
Agriculture (PA), a developing field that involves the strategic combination of sensors and data 
analytics to inform agricultural decision-making aimed at enhancing the efficiency, production, 
and sustainability of agricultural operations (ISPA, 2018). PA is driven by technologies such as 
variable rate technology, and robotics (Blackmore, 2016; Ahmad & Mahdi, 2018), remote sensing 
(Liu, Xiang, Jin, Liu, Yan, & Wang, 2021), Geographic Information Systems (GIS) (Radoglou-
Grammatikis, Sarigiannidis, Lagkas, & Moscholios, 2020), Global Positioning Systems (GPS) 
(Guo et al., 2018) and data analysis which incorporates internet of things, machine learning and 
artificial intelligence (Akhter & Sofi, 2022). The use of historical data and collection of real-time 
data with sensors provides a basis for better decision-making. For horticultural farming, it enables 
farmers to gather and assess data pertaining to site selection, soil quality, meteorological 
patterns, and information on crop status for pruning and training decisions. This results in 
enhanced resource allocation and improves agricultural oversight (Sishodia, Ray, & Singh, 2020).  
Remote sensors provide information from target objects, being active or passive sensors based 
on their energy source to illuminate observed objects (Liu et al., 2021). Sensor types used in PA 
include electromagnetic, airflow, mechanical, electrochemical, dielectric soil moisture sensors, 
and optical sensors (Singh et al., 2020). Specifically, optical sensors are wide-ranged and include 
multispectral, hyperspectral, thermal, and visual (red, green, blue - RGB) offering an opportunity 
to collect images of objects for analysis (Bogue, 2017). Optimal sensors capture a wide range of 
data from reflectance in the visible light spectrum of red, green, and blue wavelengths, to 
reflectance across multiple distinct wavelengths that extend beyond the RGB range, including 
infrared to solve specific farm problems (Deng et al., 2018). Using sensors for data collection in 
agriculture has provided an upgrade on previously used visual observations, thus saving time, 
resources and improving the quality of data collected. Remote sensing data can be systematically 
collected over extensive geographical regions instead of limited to individual point observations 
and therefore lead to large datasets in agricultural production collected over the years with needed 
to achieve automation in the agri-food industry (Akhter & Soffi, 2022).  
Blackberrys (Rubus subgenus Rubus Watson) as a specialty crop provides distinct challenges 
that require specific strategies to optimize yield and improve fruit quality (USDA-AMS, 2020). The 
production of blackberries has had a significant increase due to the introduction of new and 
enhanced cultivars, as well as the growing interest among consumers in its substantial medicinal 
and nutritional benefits (Clark & Finn, 2014; Wu et al., 2022). In plant breeding, a combination of 
fruit firmness, post-harvest storage, and plant architecture of blackberry has been a major focus 
of research (Worthington & Clark, 2019). Additionally, the impact environmental factors causing 
flower loss, yield reduction and antioxidant capacity of blackberry has resulted in breeding 
objectives targeting flower timing and intensity of blackberry canes (Clark, 2008; Lewers, Wang 
& Vinyard, 2010). To select phenotypes, plant breeders adopt a process of visually observing the 
number of flowers per vegetation based on a scale. Additionally, blackberry crop growers lack 
access to standard data collection methodologies needed for site-specific management as 
compared to growers of large-area crops such as soybean or corn. For blackberry, the available 
data to support management decisions is mostly restricted to visual assessments made on the 
ground. However, these methods used for estimating plant characteristics are subjective, time-
consuming, and labor-intensive. As a result, data extrapolation is mostly used to encompass vast 
regions and heavily depends on the expertise of the data collector to get pertinent information 
that can be used to the entire farm (Teodorescu, Moise & Cosac, 2016). 
The advancement of unmanned aerial vehicle (UAV)-based remote sensing systems has 
significantly enhanced the field of remote sensing and PA. For agricultural surveillance it presents 
significant opportunities for obtaining field data in a convenient, fast, and economical manner, as 
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compared to conventional techniques of visual observation (Sankaran et al., 2015). The low 
altitude capability of UAVs enables the capture of ultra-high spatial resolution images of crops, 
with a level of detail down to a few centimeters. This enhances the efficiency of the monitoring 
systems and provides data collection opportunities (Sankaran et al., 2015). UAVs equipped with 
sensors enable breeders to perform High throughput phenotyping, which encompasses the usage 
of technology to characterize plants ranging from imaging conducted on the ground to aerial 
phenotyping (Gill et al., 2022). The requirement for high-resolution photographs arises when 
attempting to acquire spectral information from small objects, such as flowers and flower clusters, 
to identify them from the surrounding background (Aggelopoulou et al., 2011; Ren, Zhu & Xiao, 
2018). 
Previous research has primarily focused on extracting flower detection and intensity data using 
RGB sensors and applying color thresholding techniques (Aggelopoulou et al., 2011; Liakos et 
al., 2017). Flower detection has been evaluated on several plants including wheat, corn, rice, 
soybean, peach, citrus, cotton, apple and ornamentals as rose flowers (Hočevar, Širok, Godeša 
& Stopar, 2014; Kuar & Powell, 2015; Yahata et al., 2017; Gogul & Kumar, 2017; Dias, Tabb & 
Medieros, 2018; Guo et  al., 2018;  Tiay, Benyaphaichit & Riyamongkol, 2018; Farjon, Krikeb, 
Hillel & Alchanatis, 2020) with corresponding image processing techniques which are often highly 
challenging and technical in nature (Dias et al., 2018; Lin & Chen, 2018; Mu et al., 2023) to 
estimate agronomic traits and achieve various farm management goals ranging from yield 
estimation, pollination, thinning and plant breeding.  
In these studies, the use of ground and unmanned aerial vehicles (UAVs) has provided access to 
flowers (Gill et al., 2022), however, no research has involved the detection of blackberry flowers 
for phenotyping and orchard management purposes. Additionally, the potential of the significant 
overlap (80%) between the successive photos captured during a UAV flight and the use of newer 
UAVs provides a multi-view perspective of the plants for precise flower quantification in blackberry 
orchards. Agricultural automation and the improvement of agricultural systems technology require 
research with the aim of providing a reliable information database.  
The objective of this research therefore was to develop a method to accurately measure 
blackberry flowers from UAV remote sensing and determine image processing parameters to be 
used for an automated UAV subsystem. 
 

Materials and methods 

Remote Sensing Data Acquisition and Experiment Site 
The study used a Da-Jiang Innovations (DJI) Mavic 3 Enterprise Unmanned Aerial Vehicle (Mavic 
M3E, Da Jiang Innovations Science and Technology Co. Ltd., Shenzhen, China). The DJI Mavic 
3E quadcopter was used to obtain photos of blackberry crops using the Red (650nm), Green 
(550nm), Blue (450nm) color spectrum with a ½ inch CMOS sensor and an image resolution of 
12 megapixels. Using a preset navigation control set on normal mode and mission plan developed 
for the area of study, data was autonomously collected and saved on an SD card in the UAV. To 
enhance precision, data capture was conducted at a height of 12 meters above ground level 
(AGL) as allowed by the DJI Mavic 3E flight controller, at 80% cross overlap (DJI, 2024).  
The identification of blackberry flowers was defined by segmentation of flower and vegetation. All 
123 images captured at the 12m AGL were manually labelled. Microsoft Photos (Microsoft 
Corporation, Redmond, Washington, USA) was used to manually count the number of flowers per 
plot using a paper developed quadrat of 0.25cm2. To ensure images mimicked field data capture, 
images were zoomed-in 36% with quadrat randomly placed a maximum of six rando locations on 
the plot to count number of “white flowers” per quadrat. The total number of flowers per plot was 
determined and divided by the product of number of quadrats and size of quadrat resulting in the 
number of flowers/cm2. Visual assessment of flowering characteristics of plants is often used by 
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researchers and plant breeders, using scales of 0-10 or 0-100% depending on the nature of study 
(Zhang et al., 2020). Furthermore, these visual assessments must account for the number of 
canes, complicating the evaluation process using UAV images since the number of canes is not 
detectable from such images. Consequently, the method developed in this study addresses this 
challenge. 
The study involved Blackberry (Rubus subgenus Rubus Watson) crop breeding trails located at 
the University of Arkansas Fruit Research Station in Clarksville (lat. 35°31′58′′N and long. 
93°24′12′′W). The blackberry orchards at the station have five sections for breeding purposes 
(Figure 1.1). For this study, data was collected from Section One (1) with 123 plots of blackberry 
plants with erect growth habits on April 26, 2024. 

 
Figure 1.1. Map of the study area. (A) shows the University of Arkansas Fruit Research Station 
with five sections and section 1 labelled in red box; (B) shows the orthomosaic for section with 
images captured on 26th April 2023. Figures were generated by ArcGIS Pro Desktop 10.8.2 
software (ESRI, Redlands, California, USA).  

Image Processing and Analysis  
After the UAV flight, the photos were analyzed using the Fiji - ImageJ software suite (Schneider, 
Rasband & Eliceiri, 2012). This process consisted of multiple stages offline (Figure 1.2). It began 
with individual plot extraction in Microsoft Photos (Microsoft Corporation, Redmond, Washington, 
USA). Research has demonstrated that high-definition digital photographs can be converted into 
other color spaces using Hue-Saturation-Brightness (Tsai & Yeh, 2008). The colors of these 
visible images captured with the UAV were transformed into HSB color model. Subsequently, a 
binary threshold segmentation was employed to distinguish between flowers (white) and 
vegetation (green). 
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Figure 1.2. Comprehensive image processing flow diagram illustrating the sequential steps 
involved in the analysis and interpretation of UAV-captured imagery for assessments of flower 
and vegetation coverage for blackberry plots. 
The segmentation process was essential to compute the Flower-Vegetation Ratio (FVR). To 
determine the differences in RGB, a single pixel was selected with a set scale of 0.32cm 
representing the ground sampling distance. Through the application of thresholding technique, 
the area (cm2) and percentage (%) coverage of flower and vegetation were extracted. This 
segmentation process identified the floral bloom from the RGB image. Figure 1.3 displays the 
outcomes of the picture processing. Following the thresholding procedure, a filtering process was 
employed to eliminate the presence of outliers through noise removal.  

 
(A) 

 
(B) 

Figure 1.3. Plant thresholding from UAV image: (A) clipped and rotated plots from UAV imagery 
with flower threshold selected at different flower coverage with HSB threshold colors of Hue 49-
255, Saturation 0-40, Brightness 177-255; (B) clipped and rotated plots from UAV imagery with 
vegetation threshold selected at different vegetation coverage with HSB threshold colors of Hue 
48-255, Saturation 0-255, Brightness 0-255. 
Based on area of flower and vegetation coverage in percentages, a flower-vegetation ratio was 
calculated for each plot. Additional data analysis of simple linear regression, paired sample t-test 
and Pearson’s correlation analysis was used to investigate the differences in FVR for various 
plots, the set scale used to determine FVR and the relationship between FVR and ground truth 
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data (visual observations) respectively. All statistical analysis was performed in RStudio (R Core 
Team, 2021) online via Posit Cloud.  

  FVR = FC/VC x 100  (1) 
Where FVR = Flower Vegetation Ratio, FC = Flower Coverage (%) and VC = Vegetation 
Coverage (%).  

Results  
The data on the Flower Vegetation Ratio (FVR) which measured the proportion of flower covering 
to vegetation coverage, was examined using descriptive statistics to provide a summary of the 
average and range of values. Flower coverage per vegetation coverage was estimated to 
determine the flower density per plot, Figure 2.1 shows the binary segmentation results to 
determine the Region Of Interests (ROI) with a minimum and maximum threshold of 0 and 255.  

         

(A) (B) (C) 

         
(D) (E) (F) 

Figure 2.1. Binary segmentation of flowers and vegetation from RGB images to illustrate 
segmentation effectiveness for different plot sizes: (A) clipped RGB image of plot 54 with binary 
of flowers and vegetation, FVR = 15.75; (B) clipped RGB image of plot 49 with binary of flowers 
and vegetation, FVR = 7.96; (C) clipped RGB image of plot 57 with binary of flowers and 
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vegetation, FVR = 7.10; (D) clipped RGB image of plot 77 with binary of flowers and vegetation, 
FVR = 0.16; (E) clipped RGB image of plot 67 with binary of flowers and vegetation, FVR = 0.83; 
(F) clipped RGB image of plot 78 with binary of flowers and vegetation, FVR = 5.08.  
The mean FVR was 1.756 (n=123), indicating the average ratio between floral and vegetation 
coverage throughout the plots with a standard deviation of 1.976. The minimum and maximum 
FVRs were 0.000 and 15.575 respectively. Figure 2.2 depicts the distribution of FVR which was 
a right-skewed distribution. 

 
Figure 2.2. Histogram of Flower Vegetation Ratio (n=123).  

A paired samples t-test was performed to compare the means of FVR from area (cm2) and FVR 
from percent coverage (%) to determine whether there are noteworthy disparities between these 
two variables. The study showed that there was no statistically significant difference between the 
means of FVR from area (cm2) and FVR from percent coverage (%) (t (122) = 1.017, p = .311) 
validating the set-scale based on the ground sampling distance of image captured.  

 
Figure 2.3. Paired box plot for FVR from area (cm2) and FVR from percent coverage (%). 

Simple Linear Regression (SLR) analysis was used to determine the correlation between 
Vegetation Coverage (%) as a predictor variable and Flower Coverage (%) as a response 
variable. The regression analysis showed a statistically significant positive correlation between 
the variables Vegetation Coverage (%) and Flower Coverage (%) (β = 0.031, SE = 0.006, t = 
5.404, p < .001). The intercept of the model was calculated to be -0.322 (standard error = 0.160, 
t-value = -2.010, p-value = .047). The model accounted for 19.44% of the variation in floral 
coverage percentages, as indicated by the coefficient of determination (R² = .1944, Adjusted R² 
= .1878). The model's F-statistic was 29.21, indicating a statistically significant fit, as evidenced 
by a p-value of less than .001. 
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Figure 2.4 Correlation of Vegetation Coverage (%) and Flower Coverage (%). 

A Pearson correlation analysis was performed to evaluate the magnitude of the linear association 
between the Flower-Vegetation Ratio and Visual Estimates. The analysis showed a Pearson 
correlation coefficient (r) of 0.675, suggesting a moderate to strong positive association. The 
positive correlation indicates that there is a direct relationship between higher levels of vegetation 
and higher visual perceptions of vegetation or floral density. 

 
2.5. Correlation between Flower Visual Estimates and Flower-Vegetation Ratio. 

Discussion  
The objective of this study was to investigate the efficacy of Unmanned Aerial Vehicles (UAVs) in 
identifying and measuring the extent of floral distribution in agricultural environments, with a 
particular emphasis on blackberry blossom coverage. The paired t-test performed to compare two 
methods of quantifying the coverage: direct area measurement in area (FVR (cm²)) and 
percentage coverage calculations (FVR (%)). The t-statistic was found to be 1.017, with a 
corresponding p-value of .311. There was no statistically significant difference between the two 
methods, indicating that both methods yield equally reliable findings for measuring the amount of 
blackberry blossom coverage, validating the set-scale during image analysis in ImageJ (Treder 
et al., 2021).  Based on these findings, it can be inferred that both the area-based and percentage-
based methodologies can be used to measure blackberry flower coverage without any substantial 
decrease in accuracy or precision. This output has significant implications for agricultural research 
and operations, since it allows for the selection of the most suitable approach based on specific 
operational or logistical requirements, without compromising the accuracy and dependability of 
the data obtained. 
The Simple Linear Regression analysis revealed a positive correlation between Vegetation 
Coverage (%) and Flower Coverage (%). This finding highlights the usefulness of vegetation 
metrics in predicting flower density and improving real-time flower monitoring in precision 
agriculture. Nevertheless, the model explains 19.44% of the variability in bloom coverage, 
indicating the potential advantages of incorporating other technology to enhance the accuracy 
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and resilience of the predictive model. This study confirms the results of recent research that 
emphasizes the dependability and precision of unmanned aerial vehicle (UAV)-based 
photography in agricultural surveys for flower detection (Bairwa & Agrawal, 2014; Piani, Bortolotti 
& Manfrini, 2021). However, in contrast to the work of Horton, Cano, Bulanon and Fallahi, (2017), 
which focused on the importance of multispectral imaging in improving detection accuracy, this 
study exclusively used regular RGB imaging, offering a more feasible choice for settings with 
limited resources.  
For this study, the flower-vegetation ratio accounted for all aspects of the plant’s vegetation, 
where vegetation coverage included flower coverage. Rzanny, Mäder, Deggelmann, Chen and 
Wäldchen (2019) in their study aimed at obtaining suitable images for automated plant 
identification for flowers and leaves concluded that it would be beneficial to have multi-organ 
observations made of front and lateral perspectives of flowers. Though the total vegetation for the 
research included the plant multi-organs of flower and vegetation, flower coverage was largely 
accounted for through aerial view.  
The lack of considerable disparity in measurement methodology implies that less complex and 
resource-demanding techniques, such as percentage estimates derived from RGB photos, can 
be equally successful as more direct area measurements in certain situations. Additionally, the 
use of open-source ImageJ software provides horticultural farmers with a means to analyze data 
and for management decisions. This result is vital for practical use, as it suggests that farmers 
might use simpler technologies without sacrificing the precision required for making effective 
decisions.  
The conformity in measuring methodologies corresponds with the wider body of literature 
suggesting that unmanned aerial vehicles (UAVs) equipped with red-green-blue (RGB) cameras 
are adequately precise for numerous agricultural purposes (Piani et al., 2021; Volpato et al., 
2021). Nevertheless, it is crucial to acknowledge that although the comparability of data collection 
techniques adopted for this study confirms the adaptability of UAV technologies, other variables 
such as time of day and UAV flight altitude may still influence data precision and must be 
meticulously controlled during flight operations. 

Conclusion 
The study showcased the development and analysis of UAV image-based methodology for 
estimating flower density in blackberry crops. The study employed visible (RGB) images to 
observe and measure the flower density specific to vegetation cover. The results demonstrated 
positive correlation between flower-vegetation ratio and flower visual estimates for all plots. 
Additionally, the results for flower density determination using area coverage and percentage 
coverage of flower and vegetation are statistically insignificant from a paired t-test analysis. The 
performance of both the set-scale using the ground sampling distance and thresholding were 
useful in determining the flower and vegetation coverage per blackberry plot. Though there were 
outliers signifying flower coverage being greater than vegetation coverage, there was a significant 
relationship between flower coverage and vegetation coverage. In general, the research findings 
demonstrate that less resource-intensive techniques, such as RGB image-based estimations, are 
useful in flower density estimations. Conclusively, the utilization of UAV and remote sensing do 
not only advance current agricultural methods but also offers a means to achieve more 
sustainable and precise farming techniques through crop management and plant breeding. 
Further studies should prioritize the improvement of these methods, investigating the use of 
multispectral and hyperspectral imaging capabilities to amplify the accuracy and precision of crop 
monitoring systems. In addition, future research could explore the determination of flower density 
from orthophotos for large fields, thereby expanding the range and practicality of UAV-based 
technology in precision agriculture. 
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