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ABSTRACT 
 

The plant disease early warning is an essential way for protecting 
eco-environment and improving the level of vegetable quantity and quality 
safety in solar greenhouses. To realize the early warning, the cucumber disease 
model and decision support system were developed for precision cucumber 
protection in greenhouses as follow four parts. Firstly, we combined the leaf 
wetness sensors and estimation model based on canopy relative humidity (RH 
threshold model) in to the leaf wetness duration (LWD) monitoring method. 
The errors were around 1~2 h; compared with the LWD that was over 3 h, the 
monitoring effects of the method were acceptable. Secondly, we developed the 
primary infection situation early warning models of important diseases, such 
as cucumber downy mildew in solar greenhouses. The model was evaluated by 
over a 4-year (2006-2009) dataset in the field. The results showed that it could 
warn the primary infection and disease occurrence date with a probability of 
95% and more than 2 days before disease appearance. Thirdly, considering the 
characteristics of multi-warning sources of cucumber downy mildew in solar 
greenhouses, the warning source traceability model for cucumber downy 
mildew in solar greenhouses was constructed for system ease-realization using 
chain-styled theory of disaster. At last, the decision support system of 
cucumber disease early warning in solar greenhouses was developed by Visual 
Studio 2005 and SQL Server 2000, which added more functions of ongoing 
decision making for revising cultural practices than traditional record-keeping 
systems. The method and system shows promise for increasing adoption for 
IPM in China, and can provide decision support for early warning of 
cucumber diseases in solar greenhouses. 
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INTRODUCTION 
Pests as well as abiotic stress conditions commonly are heterogeneous 



in time and space in a solar greenhouse(Oerke et al., 2010). The daily 
temperature and humidity difference in a solar greenhouse is much higher than 
the field. Also the mid-temperature and high humidity environment in 
unheated greenhouses is suitable for infection and epidemic of many diseases 
and pests. For example, Cucumber downy mildew, caused by 
Pseudoperonospora cubensis (Berk.&Curt.) Rostov. (Shetty et al., 2002; Yang 
et al., 2007), is a major limitation to the production of solar greenhouse 
cucumbers. For the disease has the essential characteristics of high infection 
and epidemic rate(Hong et al., 1989), the disease could not be controlled at 
economical threshold level while the cucumber is infected by the pathogen. 
Means for early warning primary infection are not currently available to most 
growers. The control of cucumber downy mildew depends on repeated 
fungicide sprays every 7 to 14 days or frequent application of fungicides when 
the symptoms appear. So the precision crop protection is needed, which 
describes a real-time and site-specific management system using computerized 
information technologies for optimal use of water, pesticides and energy to 
pest management in heterogeneous field situations. Precision crop protection 
relies upon (I) intensive sensing of environmental conditions in the crop, (II) 
extensive data handling and processing, (III) use of decision support systems 
(DSS), and (IV) control of farm machinery (actuators) in the field (Oerke et al., 
2010). So an early warning model and a related decision support system are 
needed to best respond to consumer concerns about food quality safety, 
environmental protection and production cost reduction. 

Infection of cucumbers by P. cubensis has been studied internationally 
for many years. A wide range of models have been developed more recently to 
forecast primary infection, which belong to two kinds: empirical models (Li, 
2006; Yang et al., 2007) and fundamental models (Hong, 1987; Hong et al., 
1989; Hong et al., 1990) . Empirical models need more scientific and sound 
interpretation and fundamental models are difficult to apply because of their 
complex parameters. There is useful potential in integrating these two kinds of 
models. For reaching this goal, the dominant factor is leaf wetness duration 
(LWD). Taken cucumber downy mildew as example, the minimal LWD for 
infection was 2h. Comparing with the field crops and fruit trees (Gleason et al., 
2008; Kim et al., 2006; Magarey et al., 2006a; Magarey et al., 2006b; 
Orlandinia et al., 2008; Portraz et al., 1994; Schmitz and Grant, 2009; 
Sentelhas et al., 2008), the LWD monitoring and estimation methods for 
greenhouse crops are rarely reported. For monitoring by sensors, since the 
interactions between microclimate and crops influence LWD, leaf wetness 
sensors should be calibrated in solar greenhouse conditions; furthermore, 
because the cucumber leaf length, width and area are larger than common leaf 
wetness sensors, so the wet/dry threshold and deployment method should be 
investigated(Li et al., 2010b). For estimation by models, most studies 
concentrated on the dew (Zhang et al., 2002; Zheng et al., 1990), but the 
guttation water is often neglected. A comparison of the measurements of 
guttation water with the total amount of water on leaves in the middle of the 



rice canopy showed that the guttation water amount was at least half of it(Luo 
and Goudriaan, 1999); in the solar greenhouses, the guttation of the cucumber 
leaf margin is also common. Therefore, guttation, as a contributor to leaf 
wetness, is of similar importance to dew formation. So there is a gap in the 
integration method for leaf wetness duration of cucumber in greenhouse.  

An objective study of the performance of the disease early warning 
models combined with probability estimations of occurrence will lead to a 
better understanding of the potential usefulness of these models (Yuen and 
Hughes, 2002). Bayes’s theorem can be a useful tool to examine how a disease 
early warning model (either positive or negative) affects the probability of 
occurrence. Bayes’s theorem is basically a classifier for pattern recognition 
and also has been used to help modeling and prediction, parameter estimation, 
and optimization and control(Huang et al., 2010). Also likelihood ratios can be 
calculated from the sensitivity and specificity of the early warning, and 
provide convenient summaries of the model performance as a simpler form of 
Bayes’s theorem. With these methods, the disease early warning system will 
furnish an operational model for forecasting occurrence date and probability, 
which is analogous to methods used for predicting the probability of 
precipitation (Kumar et al., 1999; Maini et al., 2004) and of earthquake 
(Papoulia et al., 2001; Tsapanos et al., 2001), etc. Although there were some 
reports about probability forecasting and warning on field crops and 
vegetables(Mila and Carriquiry, 2004; Vincelli and Lorbeer, 1988), little work 
has been done on early warning systems that involve estimates of the 
probability of vegetable disease occurrence in solar greenhouses.  

The goal of the research reported in this paper is to obtain simple, 
real-time and correct results from a probability-based early warning model for 
the purpose of precision crop protection. In pursuit of this goal, this paper 
describes a solution to the problem of LWD input that uses an estimation 
model. The study then investigated a Bayesian analysis method for an early 
warning model for primary infection of cucumber downy mildew in solar 
greenhouses (EWMPICDW). The model was developed and implemented as a 
decision support system and evaluated in solar greenhouses in Beijing, China. 
 

MATERIALS AND METHODS 
 

Cucumber cultivation 
This study was conducted in 4 cultivation seasons, 8 solar greenhouses 

from 2006 to 2009. The disease-resistant cucumber (Cucumis sativus L.) 
“Jingyanmini No.2” (Zhang et al., 2006a) was used in all experiments. The 
first experiment in the autumn-winter season was carried out at Beijing 
Xiaotangshan Precision Agriculture Experimental Base (Xiaotangshan), in 
Changping district, Beijing, PR China (40.18°N, 116.47 °E) from October 
2006 to January 2007. Three greenhouses were used in the experiment. Each 
greenhouse was 30 m × 7 m and was constructed of metal arches covered with 
polyethylene films. The row of three greenhouses was oriented in a 



north-south direction. The greenhouses were not heated, and they had side 
vents that were opened for 5–8 hours daily when the weather permitted. The 
cucumber seedlings were planted on October 1st and were transplanted on 
October 13, 2006, and the harvest season ended on January 23, 2007. Five 
hundred four plants were arranged in a double-row pattern with small spaces 
of 40 cm and large spaces of 110 cm between rows, and there was 40 cm 
between plants in the rows. The substrate used was a 2:1 mixture of peat and 
vermiculite with 500 g chicken manure and 10 g N15-P10-K15 compound 
fertiliser per plant. The cucumbers were maintained according to the 
recommendations of the Beijing Vegetable Research Center (BVRC), China, 
and no fungicides were applied to treat P. cubensis until the time of first 
disease onset. The second experiment in the autumn-winter season was 
conducted at Beijing Academy of Agriculture and Forestry Sciences (BAAFS), 
in Haidian district, Beijing, PR China (39.95°N, 116.29°E) from September 
2008 to January 2009. The greenhouse (5 m× 4 m) was one of six rooms in a 
large greenhouse (north-south orientation). The greenhouse was constructed of 
metal arches covered with polycarbonate sheeting. A brick wall formed the 
eastern end of the greenhouse, and the western end was a glass window. The 
greenhouse used a “damp curtain-ventilator” for both vertical ventilation and 
cooling. The cucumber seedlings were planted on September 28th and 
transplanted on October 12, 2006, and the harvest season ended on January 19, 
2009. Sixty-nine plants were arranged in the double-row pattern with small 
spaces of 40 cm and large spaces of 100 cm between rows, and there was 40 
cm between plants in the rows. The substrate and cultivation practices were 
similar to those used in the first experiment. 

The first experiment in the spring-summer season was performed at 
Xiaotangshan from January 2007 to August 2007. The cucumber seedlings 
were planted on January 7th and transplanted on February 5th. The harvest 
season ended on August 21, 2007. The second experiment in the 
spring-summer season was performed at BAAFS from January to December 
2009. The cucumber seedlings were planted on January 7th and transplanted 
on February 5th. The harvest season ended on December 28, 2009. The 
greenhouses and substrate used in the spring-summer season were the same to 
those used in the autumn-winter season. 

 
Microclimatic information collection 

Xiaotangshan: From the transplanting date, the air temperature and 
relative humidity in the greenhouse were recorded every 30 min by sensors 
coupled to a datalogger (Portable equipment for measuring temperature, 
relative humidity (RH) and dew point temperature, National Engineering 
Research Center for Information Technology in Agriculture, Beijing, China). 
There were 5 sensors in each greenhouse and the total number was 15. The 
sensors were located in the centre of each group of crops in the greenhouse 
and shielded from direct solar radiation by suitable shelters. At first, the 
sensors were 10 cm higher than the plants and moved upwards regularly as the 



plants grew. When the plants reached 1.5 m, the sensors were fixed within the 
central part of the canopies. The outside weather parameters, temperature, 
relative humidity and solar radiation were also recorded by an outside weather 
datalogger every day for 30 min interval. The data was transferred from the 
datalogger (RS485 connection) to an environmental control computer (RS232 
connection) via a local area network (LAN) and stored in a Microsoft Access 
2000 database.  

BAAFS: From the transplanting date, the same sensors in Xiaotangshan 
were used in the greenhouse. They were arranged above the No.1, 2, 3, 5, 6 
row and located in the south, middle and north part. The monitoring method 
was similar to Xiaotangshan. 

 
Disease investigation 

The inoculums were the natural pathogen of these greenhouses. Each 
investigation was conducted by the same person in the morning before the 
leaves were dry. After the seedlings were transplanted, an extensive survey 
was carried out each day until greenish infected tissues appeared. The date of 
the first occurrence was recorded. In Xiaotangshan, five groups of 15 plants in 
an “X”-pattern around the location of sensors were selected for disease 
observation in each greenhouse. These groups were named South-west, 
North-west, Middle, South-east and North-east. In Xiaotangshan, the total 
number of points for observation was 15. In BAAFS, fifteen groups of 4 plants 
in a parallel-line pattern around the sensor locations were selected for use as 
points for observation to provide 15 total as in Xiaotangshan. In all, the 
investigation included 15×4=60 points for observation over the 4 cultivation 
seasons. These points were numbered from 1 to 60. In this paper, we 
summarised our investigations from the earliest predicted infection date to the 
latest observed disease occurrence date for the 60 points. The resulting sample 
included 735 cases. 

 
MODEL DESCRIPTIONS 

 
Conceptual model 

It is obvious that the early warning models will be suitable in practice 
only when input parameters are readily available and appropriately limited in 
number (Li, et al, 2010a). EWMPICDW was developed based on early 
warning theory and plant disease epidemiology, which included clarification 
of the meaning of warning, monitoring the warning indicators, forecasting the 
warning situation, tracing the warning sources and controlling the warning 
situation. 
Clarifying the meaning of warning 

The goal of this component is to confirm the object of the warning. The 
object addressed in the paper is the cucumber downy mildew. The indicators 
of measured disease include disease occurrence probability, disease incidence, 
disease index, etc. Because the cucumber downy mildew spreads rapidly under 



favourable weather conditions, growers are primarily concerned about the 
possibility that infection will occur, rather than about knowing how much 
infection will actually take place (Arauz et al., 2010). Accordingly, the 
probability of disease occurrence was selected as the object of the warning for 
the purposes of this paper. EWMPICDW should provide early warnings 
before the symptom appears. These warnings would include disease 
occurrence (yes or no) and its probability. These warnings would be beneficial 
because they could serve to reduce the frequency of fungicide sprays and 
likewise to improve the quality of the agricultural products. 

 
Monitoring the warning indicators 

Among the warning indicators including temperature, humidity, etc, the 
LWD receives the most attention. Because the Leaf Wetness Duration (LWD) 
is difficult to monitor and is a key input to disease warning systems for crops 
in solar greenhouses, the RH threshold model were developed to form a 
practical estimation solution for LWD. In our experiment, the LWD was 
mainly due to guttation. 

In continuous cloudy weather, the cucumber leaf wetness duration is 
longer, and the relative humidity in solar greenhouses is higher. The LWD 
estimation model based on canopy relative humidity (RH threshold model) is 
one of the easiest models to implement and to use (Sentelhas et al., 2008), but 
it should be calibrated and validated under real greenhouse conditions. Note 
that  
RH≥TR  （0≤TR≤100%）                    (1) 
where RH is relative humidity (%), and TR is the relative humidity threshold 
at leaf wetness (%). 

The RH data were obtained at 5 min intervals from an automatic weather 
station (Vantage Pro & Plus, Davis Instruments Corp, California, USA) 
located in the middle section of the greenhouse. The trial-and-error method 
(Xiong, 2009), average value method (Gillespie et al., 1993) and the method 
based on frequency of leaf wetness (Zheng et al., 1990) were used to calibrate 
the RH threshold. The RH thresholds obtained using these 3 methods were 
90%, 89% and 93%, respectively. To illustrate our approach using the 
trial-and-error method, we developed a calibration program using Visual C# 
2005 and Microsoft Access 2003.  

The trial-and-error approach (MAE=2.03) and average value approach 
(MAE =2.14) were superior to the method based on frequency of leaf wetness. 
The errors were around 2 h. Because the LWD values were over 3 h, the 
monitoring effects of the RH threshold (RH=89% or 90%) model were 
considered acceptable (Li et al., 2010c). 

 
Forecasting the warning situation 

Based on the mechanisms of cucumber downy mildew infestation, the 
infection condition and incubation period early warning submodels were seen 
to represent key stages for primary infection and were given more attention 



(Fig. 1). The interval between inoculation and the appearance of disease 
symptoms is known as the incubation period. Disease symptoms appear 
following the incubation period. 

        

 
a. Pathogen       b. Infection        c. Incubation       d. 

Appearance 
Fig.1 The primary infection mechanism of cucumber downy mildew. Fig1.a 
was photographed by a microscope, Fig1.b and c were chosen from a paper 
(Lindenthal et al., 2005), and Fig1.d was photographed by a camera. 

Data from a literature on experimental infection of susceptible cucumber 
leaves by P. cubensis under controlled conditions (Cohen, 1977) were used for 
modelling infection. These data indicate that the minimal temperature for 
infection is 20℃ with 2 h of wetness (Cohen, 1977). The infection condition 
therefore depends on a favourable combination of LWD and mean temperature 
in LWD. The minimal threshold is 2 h×20 ℃=40 h·℃. This threshold agrees 
with many mechanistic experimental results (Hong, 1987; Shi et al., 2005). 
For the recovery period subsequent to transplanting cucumber seedlings, the 
model would run beginning on a date 1 week after transplanting. Note also 
that 
LWD *TLWD≥40 h·℃     (LWD≥2 h, 5℃≤TLWD≤30℃)      （2） 
where LWD is leaf wetness duration (h), and TLWD is mean temperature (℃) 
in leaf wetness duration. 

The time of first appearance of downy mildew symptoms depends more 
on temperature than on leaf wetness duration (Yang et al., 2007). Published 
data from inoculation experiments at different temperatures suggest the 
following values for the elapsed time between infection and symptom 
appearance: 2 d at 22–25°C, 3–4 d at 26–30°C, 7 d at 15–16°C and 10 d at 
12–15°C (Fu and Yao, 1983). The temperature contribution rate (y) for 
symptom appearance was therefore measured by the reciprocal of the duration 
(days) of the inoculation period in the controlled experiments. The relationship 
of hourly mean temperature (t) and temperature contribution rate (y) was fitted 
using the SAS (Statistical Analysis System V.8.0.2, SAS Institute Inc., Cary, 
NC, USA) NLIN program with the Gauss-Newton method and expressed as:  

0.0165
1 10389.2 exp 0.5743

y
t

=
+ ⋅ − ⋅（ ）

  (p= 0.0033)     （3） 

where y is contribution rate, and t is hourly mean temperature (℃).When y 



attains a value of 1, the incubation period is over and symptoms may appear. 
 
Tracing the warning sources 

Successful tracing of a disease warning to its source provides the basis of 
controlling disease for solar greenhouse vegetables. Using disaster chain-style 
theory and plant epidemiological theory (Xiao, 2006)), the problem of tracing 
a disease warning to its source was systematically analysed in association with 
disaster mitigation modes that involved cutting the disaster chain from the 
origin. The model took into account the multiple sources of disease early 
warning under solar greenhouse conditions and their effects on the modes and 
paths of interpretation of disease early warning. For example, because P. 
cubensis is a widely existing pathogen in cucumber production fields, and 
because greenhouses allow cultivation of cucurbits throughout the year, the 
primary inoculum sources exist in most greenhouses (Yang, et al, 2007) as the 
warning source. In the winter and spring, overcast, rainy, snowy and foggy 
weather conditions also represent potential sources of warnings of cucumber 
downy mildew infection. To integrate this experience and knowledge, the 
warning source traceability algorithm for cucumber downy mildew in solar 
greenhouses was constructed and tested for ease of system realisation. 
Detailed information about this project appears in our publication (Li, et al., 
2010d).  

 
Controlling the warning situation 
Based on good agricultural practices (GAP), the control of the warning 
situation was established using the method of mitigation disaster by cutting the 
disaster chain upstream from the focus of the problem. For example, the 
overcast, rainy, snowy and foggy weather often represents the warning source 
for the occurrence of cucumber downy mildew. Farmers can enhance 
ventilation so as to decrease the LWD and can thereby control the conditions 
that would otherwise lead to infection. If the user chooses to apply chemicals, 
then the agents used should be suitable and justified (according to label 
recommendations or official registration body publication) for P. cubensis 
based on CHINAGAP (Yang, et al, 2007). 
 
Data analysis 

Analyses of sampling variance and standard deviation were done using 
SAS8.02 (SAS Institute Inc., North Carolina, USA). The figures were drawn 
using Microsoft Excel 2003. The main methods included:  

Error analysis method. The estimated values and observed values 
were compared using random point figures. The errors were evaluated by 
RMSE, willmott agreement index(W), mean absolute error (MAE) and mean 
bias error (MBE) (Sentelhas et al., 2008). 

Bayesian analysis method. If a method correctly estimated presence in 
an interval of time, it was scored in box X. If a method failed to estimate 
presence when it did occur, it was scored in box Y. If a method estimated 
presence when it did not occur, it was scored in box S. Finally, if a method 



correctly estimated absence, it was scored in box Z. The model estimation 
results were also analyzed considering each sample using a contingency table 
(Table 1). Then the sensitivity (Sen), specificity (Spe), accuracy (Acc, i.e. Youden 
Index), false negative rate (Fnr) and false positive rate (Fpr) were computed 
using the data in Table 1.  

 
 

Table 1  Category and summary of calculation results of early warning model 
for cucumber downy mildew in greenhouse 

N Estimated--Yes Estimated--No 
Observed--Yes Hits（X） Misses（Y） 
Observed--No False alarms（S） Correct negatives（Z） 

 
In general, based on the Bayesian Theorem, let A represent disease 

occurrence, ( )P A  is the prior probability of disease occurrence based on our 

past experience(Yuen and Hughes, 2002). According to our investigated 
disease data between 2006 and 2009, there were 41 points with cucumber 

downy mildew occurrence among the 60 points. So ( )P A =41/60=0.68, and 

then the prior probability of disease nonoccurrence, ( )P A =0.32, 

and ( )P A + ( )P A =1. Next, let B  represent an early warning of the occurrence 

of disease and B  an early warning of the nonoccurrence of disease. 

Sensitivity is the conditional probability ( )P B A , which represent the 

probability of an early warning of disease occurrence given that disease 

actually occurred. Similarly, ( )P B A =Spe, ( )P B A =Fnr, ( )P B A =Fpr. From the 

point of view of practical disease early warning, we are usually less interested 
in sensitivity and specificity as such, and more concerned with posterior 

probabilities (i.e. conditional probabilities) such as ( )P A B , the probability of 

disease occurrence, given an early warning of occurrence; and ( )P A B , the 

probability of nonoccurrence of disease, given an early warning of 
nonoccurrence. Furthermore, the likelihood ratio of a positive early warning 

( ( , )LR A B ) is a useful measure that contains information from both sensitivity 

and specificity to summarize the results. Likewise, we can also define the 

likelihood ratio of a negative early warning ( ( , )LR A B ). The equations could be 

seen in previous paper(Zhao et al., 2011). To summarize, from the point of 
view of making predictions of disease occurrence, we would ideally like a 

predictor to have ( , )LR A B as large as possible, and simultaneously have 



( , )LR A B as small as possible.  

RESULTS 
 

Model evaluations 
The early warning results were evaluated in 2-site and 4-year data. From 

the error analysis, the model had good performance, with the accuracy 
(W=0.87). The estimation error was about 4 d (MAE=4.25); however, 
considering that the PIEW could early warning infection condition, the 
warning could be provided before the symptom appearance and the incubation 
period was often more than 2 d, so the error would be reduced to less than 2 d. 
The result will meet the requirement of cucumber downy mildew early 
warning in greenhouses. From Fig.2 (RMSE=8.74), there were a few points in 
the vertical axis, so the model should be improved for reduced the omitting 
points (i.e. miss warning rate).  
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Fig.2  Comparison of occurrence date between observed values and 
simulated values under the early warning model for cucumber downy mildew 
in greenhouse (PIEWCDW) 

From Table 2, the model had good performance with sensitivity being 
0.68, specificity 0.92 and accuracy 0.60. Using the PIEWCDW, a positive 
early warning increased the chance of disease occurrence from 0.68 to 0·95, so 
we could warn the cucumber downy mildew occurrence with 95% probability. 
While a negative early warning decreased the occurrence chance from 0.68 to 
0.42, but the probability of disease occurrence was still near to 0.5: disease 
occurrence and nonoccurrence were equally likely, despite the negative early 
warning. So the early warning for nonoccurrence should be improved, which 
is similar to Fig. 2.  

In likelihood ratio of Bayesian theorem, ( , )LR A B =8.5＞1, ( , )LR A B =0.35

＜1, the model had relative ideal results.  
Table 2  Bayesian analysis of early warning results of PIEWCDW 

 Estimated--Ye
s Estimated--No Total 

numb
Prior 
probabil

Posterior 
probabilit



er ity y 

Observed--
Yes 

X=84 ( )P B A =
0.68 

Y=39 ( )P B A =0
.32 

123 
( )P A =0.

68 

( )P A B =0

.95 

Observed--
No 

S=34 ( )P B A =
0.08 

Z=425 ( )P B A =
0.92 

459 
( )P A =0.

32 

( )P A B =0

.58 
Total 
number 118 464 582   

Model for DSS development 
We developed the early warning system based on the model using Visual 

C# 2005 and Microsoft Access 2003. The user could collect information about 
the cucumbers, the pathogen, cultivation and environmental conditions and 
generate early warnings of infection and occurrence of cucumber downy 
mildew (Fig. 3). 

 
a Infection condition early warning 



 
b Incubation period early warning 
Fig.3  Early warning system for primary infection of cucumber downy 
mildew in solar greenhouses 
 

DISCUSSIONS 
Comparing with the existing model and system for early warning(Li et al., 

2010a), the LWD increased the mechanics of models. The early warning 
models for plant diseases had two kinds(Madden and Ellis, 1988): 
fundamental models had higher accuracy and scientific meaning, but they 
were difficult to apply because of their complex parameters(Hong, 1987; 
Hong et al., 1989; Hong et al., 1990); empirical models were more simple, but 
they needed more scientific and sound interpretation (Li, 2006; Yang et al., 
2007). Especially, many models selected relative humidity and temperature as 
main inputs (Ju, 2006; Xu, 2004), and paid no attention to the leaf wetness 
duration, which is essential for pathogen infection of leaf diseases in theory 
and real greenhouses, such as cucumber downy mildew. The model 
PIEWCDW integrated these two kinds of models and extracted the dominant 
factors. The leaf wetness duration monitoring by sensors and estimation by 
relative humidity-based model were investigated in order to support the early 
warning model for ultimate early warning system. A solution of model error 
analysis was also provided and the error would be reduced to less than 2 d. 
Based on Bayesian theorem, we could warn the cucumber downy mildew 
occurrence with 95% probability. The objective study of the performance of 
the early warning model will lead to a better understanding of disease 
occurrence probability than the subjective experiences. The results are similar 
to weather forecast and benefit for disease probability early warning. 

Like all models, the PIEWCDW sometimes provided incorrect early 
warning. The frequency of incorrect early warning will influence the rate of 
adoption of a method by potential users, and its continued use. The probable 
reasons were the accuracy of leaf wetness duration monitoring method and 
estimation model. In contrast to air temperature, LWD is a difficult variable to 



monitor or to estimate because it is driven by both atmospheric conditions and 
their interactions with the structure and composition of the crop canopies 
(Sentelhas et al., 2005). Leaf wetness sensors may not simulate the real 
situation, and only relative humidity-based estimation model would have some 
errors. For LWD is an initial factor for model, so if there is error for LWD 
input, such as not detecting the LWD appearance, then the early warning 
model would omit the warning. Maybe the combination and reduction of the 
LWD monitoring and estimation method should be investigated 
furthermore(Li et al., 2010b).  

The second reason was the limitation of prior probability of cucumber 
downy mildew. In reality, we have often little information on prior occurrence 
of diseases. Although we estimated the prior probability of cucumber downy 
mildew using 4-year and 2-site data set, the use of historical data in order to 
estimate the prior probabilities involved assumptions about similar weather, 
cultivars, cultural practices, and pathogen population for other sites(Yuen and 
Hughes, 2002). These assumptions may or may not be true. It is essential for 
model extension that obtaining more disease occurrence data from different 
years and sites for validation in future. 

Still, our results suggest that the LWD monitoring method and estimation 
model can provide LWD values accurately enough to implement disease early 
warning systems that use LWD as an input. Knowing the performance of 
PIEWCDW by probability will enable the targeting of areas where there is a 
chance that it might be used. With further testing, these methods may help to 
encourage growers in solar greenhouses to apply disease early warning 
systems for reducing the frequency of fungicide sprays and then improving the 
agricultural product quality. 
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