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ABSTRACT 
 
     Quantitative characterization of soil properties spatial variation has first been 
applied in Brazil using the opportunity index for the Precision Agriculture (PA) 
adoption. Preliminary index results from four Brazilian research-plots are 
introduced, in a stepwise process to adapt methods and protocols for different 
production systems. The model applied uses variogram parameters to quantify the 
magnitude and the structure of soil properties variation. An electrode-coulter-
based sensor was used to map continuous in three no-tillage crop production 
systems and one pasture system. Results of these different fields and soil depths 
have fit typical index values and soil variations as previously observed, 
suggesting that indices could indicate adoption potential with further model 
calibration for different nutrient management practices. 
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INTRODUCTION 
 
     Quantitative approaches for the precision agriculture (PA) adoption are 
demanding decision support tools to better understand the ability of variable rate  
 
 



machinery to react in-field crop production variation. However, the need for 
characterization of production factor’s variability has been mostly supported by 
customized and detailed geostatistical analyses, which is difficult to implement as 
general broad information accessible to farm managers. For this matter, few 
studies have been focused on simple and standardized indicators to support basic 
decisions at initial phases of PA adoption. Some adoption opportunity indices 
have been introduced based upon intensive monitoring data (Cambardella et al., 
1994; Pringle et al., 2003) regarding operational (Tisseyre & McBratney, 2007) 
and strategic (de Oliveira & Whelan, 2008) decision support tools, but they are 
still requiring model calibration and normalization to different crop properties and 
regional management practices. 
     The main objective of this research is to fit an opportunity index for the 
Precision Agriculture (PA) adoption based on apparent soil electrical 
conductivity, first applying in Brazil a soil-property variability index (Si) as an 
indicator for site-specific management. The study is part of a joint research 
network project, named Brazilian Precision Agriculture Research Network 
(BPARN), aiming at establishing methods and protocols for the adoption of PA 
technology for several production systems (see abstract 1219). 
     On-the-go monitoring of apparent soil electrical conductivity (ECa) is an 
efficient and affordable (PA) technology, mostly available in Brazil, which may 
indirectly indicate the degree and the spatial structure of variation for some 
physical and chemical soil properties. Apparent soil electrical conductivity 
integrates texture and moisture availability, two soil characteristics that affect 
productivity while helping with the interpretation of spatial yield variations for 
certain soils (Kitchen et al., 1999) and related to variation in crop production 
(Kitchen et al., 1999; Luchiari et al., 2001). 
     Commercially available instruments can be of two types, an electrode-coulter-
based contact sensor or induction-based non-contact sensors (Sudduth et al., 
2003). An electrode-coulter-based sensor adapted from Veris 3100 technology to 
have continuous, via combine subsoiler and combine planter, was described by 
Rabello et al. (2008a,b). These high resolution measures have been evaluated and 
their typical responses to agricultural soil properties at distinct depths compared 
for use as input for decision making. They have been applied to a wide range of 
agricultural operations such as prediction of soil-water regime, salinity 
management, and characterization of production systems. In Brazil, Machado et 
al. (2006) verified that values of soil EC reflected soil clay content spatial 
variation and was adequate for establishing the limits of management zones. 
     Evaluations of depth-weighted responses between different ECa measurements 
have shown highly contrasting correlation results were associated with differences 
in soil parent material, levels of organic matter, drainage classes, profile layering 
and variations in crop management (Sudduth et al., 2005). These studies have 
shown that relationships between ECa and crop yield may vary both spatially due 
to soil differences, and temporally due to climatic and managerial differences. 
Yet, electrode-based ECa variations could be explained to a large extent by 
considering spatial linear mixed-effects models, where soil organic matter, clay 
content, presence of gleyic horizons and geological map units could mostly 
explain field-specific random effects (Kühn et al., 2009). Due to the limited 



adoption of yield monitor technology in Brazil, the evaluation of quantitative 
models should be considered with different ECa data inputs. 
     Opportunity index (Oi) models have been mostly suggested as a function of 
yield variation (Yi) and the associated environmental cost/benefits (E), as shown 
in Equation 1 (Pringle et al., 2003). 
 

O ( Y )i if E   =   ,  (1) 
 
     Pringle et al., 2003 have considered concepts on the magnitude and the spatial 
structure of yield variation that have proven to be relevant when assessing the 
opportunity for differential crop management. Still, a fair bit of work is still 
required to establish the environmental-economic component to make a complete 
opportunity assessment. This preliminary approach used yield monitor data from 
grape and grain crop production systems from Australia. In France, a technical 
opportunity index (Tisseyre & McBratney, 2007), takes into account the 
minimum kernel area that machinery controllers can operate in areas of erosions 
and dilatations. In spatial terms, patterns are assessed in relation to the smallest 
area unit of treatment applicable. This operational kernel resolution can be a 
function of machinery characteristics (Pringle et al., 2003), machinery 
characteristics plus position inaccuracy (Tisseyre & McBratney, 2007), or 
changes along the swath (Dillon et al., 2007). 
     Although supporting a more detailed representation for operational practices, 
this model has increased complexity, requiring additional morphological data 
input and skilled interpretations. Further investigations on the Oi model were 
considered for fields located in three Australian regions (de Oliveira et al., 2007), 
trying to adjust the Oi to support non-stationary yield variations. In addition, this 
model was systematically applied to different data inputs, thus: yield monitor 
(Yi); ECa by electrical magnetic induction (Si_EM); and Imagery (Ii_NDVI). 
 

MATERIAL AND METHODS 
 
     Soil electrical conductivity was gathered using the Veris model 3100 sensor 
manufactured by Veris Technologies of Salina, KS (Lund et al., 1999) and a 
prototype model point based readings (Rabello et al., 2010, 2011). Inputs from 
four fields located in different agroclimatic regions with no-tillage grain crop 
production systems and an intensive managed pasture were considered to a 
variety of inputs aiming at a simple numeric distribution validation of contact 
based opportunity indices (Si_Veris) against previous index distributions computed 
for Australian grain crop fields (de Oliveira, 2009). Fields are among the first 
available pilot areas associated to the BPARN project. The three fields  that have 
continuous ECa measurements are:  Field 26 (9 ha) and Field 49 (6 ha), both with 
soybean after fallow rotation at the Agrishow experimental area, Ribeirão Preto, 
São Paulo State, and Field 6 (33 ha), located at Cruzeiro Farm, Castelândia, Goiás 
State, with a soybeans, sorghum, and millet rotation. Point based readings (320 
observations), were gathered in an 8 ha field for an irrigated and intensive 
managed Mombaça-grass (Panicum maximum) pasture (see abstract 1047) at 
Embrapa Cattle-Southeast (Canchim Farm), São Carlos, São Paulo State. 



Continuous readings were of two depths, 30 cm and 90 cm; and point based for 20 
cm and 40 cm. 
     Pre-processing of Brazilian contact-based index (Si_Veris) computations has 
considered a step wise protocol as suggested in Taylor et al. (2007) for 
delineation of site-specific management zones. Datasets were georeferenced, 
organized, and analysed using variogram parameters from Vesper software 
(Whelan et al., 2001). The selection of the best fitting variogram was undertaken 
by means of classical evaluation parameters having additional considerations for 
the practical range in relation to the associated field maximum lag. Detailed 
discussion of evaluation parameters, such as the Akaike Information Criteria 
(AIC), is given by Webster & McBratney (1989). Finally, a visual validation of 
Si_Veris by single field is performed using kriged maps plotted with a normalized 
colour table legend which considered minimum and maximum ECa values from 
all four field-samples using Vesper software (Whelan et al., 2001). 
     As further detailed in de Oliveira (2009), the first Si_Veris component considers 
the magnitude of ECa variations (MV) while considering an area related coefficient 
of variation (CVA) which is computed by the total average field variance (AC) 
minus the nugget effect (C0). The average covariance is recursively computed 
between each single sample location and all the other points within the field.  The 
second Si_Veris component regards the spatial structure of ECa variation (SV). It is 
dependent on the application response which can be adjusted to different 
machinery or commercially available variable-rate applications to be considered. 
The SV addresses the maximum length for the average autocorrelated ECa 
variation denoted as correlated distance (CD) and standardized against the 
operational length (OL). The final spatial variability index from contact-based on 
soil ECa is given in Equation 2. 
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Where; 

Mv  –   magnitude of variation;                   CD – autocorrelation distance; and 
Sv   –   spatial structure of variation;          OL – operational length. 
CVA – spatial variation coefficient; 

 
 

RESULTS AND DISCUSSIONS 
 
     Table 1 summarizes the ECa distribution by individual fields, characterizing 
the different input data sets. Relatively low values of ECa ranges for fields T6 and 
Canchim may reflect typical low soil moisture of these regions. The results 
derived from the best fitting models (Table 2) have confirmed that continuous 
monitoring inputs are expected to better support this type of analysis, where the 
Canchim variogram were still of non-stationary behaviour for both depths even 
after detrend procedures. 
 



Table 1. ECa Distribution for available fields at different depths. 

 

 
 
Table 2. Variogram parameters and Si_Veris results for all fields at different depths. 

Field Variogram 
Model 

  ECa  (mS/m) Mv Sv Si 
C0 C1 a1 

T26 (30 cm) Spherical 2.03 1.99 310 1.73 6.7 3.4 

T26 (90 cm) Spherical 10215 17183 97 4.48 4.1 4.3 

T49 (30 cm) Stable 4.94 2223.7 50000 2.54 13.6 5.8 

T49 (90 cm) Exponential 62.84 21.06 252 2.16 11.2 6.4 

T6 (30 cm) Exponential 3.80 2.48 51 0.91 16.4 3.9 

T6 (90 cm) Spherical 0.48 0.25 183 0.80 5.0 2.0 

Canchim (20 cm) Spherical 4.81 1172.8 50000 0.71 15.0 3.3 

Canchim (40 cm) Spherical 0.68 73.65 10000 1.10 12.8 3.8 
 
 
     Variogram models have indicated that both, stationary and non-stationary 
trends did not interfere on final index results (Figure 1). This can also be observed 
in Table 2 with stable response of index components and final results on all fields 
and depths. For continuous readings only the T49 field (30 cm) had a more 
laborious variogram fitting. This could be directly related to a more random 
legacy of soil cover and soil management practices for this experimental plot. 
     Interpolated maps using ordinary kriging and adjusted for a single legend 
(Figure 2) can be visually related to the final Si_Veris values as clearly observed in 
field T49 (90 cm). This field has the highest index result associated to a map 
showing large magnitude of ECa variation and well structured spatial patterns. 
 

Field Depth 
(cm) # 

  ECa 
(mS/m) CV 

(%) 
Min. Med. Max. Mean 

T26 30 4868 0.2 6.3 10.6 6.2 28.5 

T26 90 3464 0.4 197.3 374.8 180.6 65.8 

T49 30 1933 2.1 7.7 16.6 7.9 37.1 

T49 90 1933 0.8 10.9 47.6 13.0 62.3 

T6 30 7470 0.2 7.1 17.5 6.9 36.2 

T6 90 7470 0.1 2.6 7.7 2.6 33.4 

Canchim 20 320 0.1 6.2 9.9 6.0 78.1 

Canchim 40 320 0.3 4.3 9.6 4.6 73.1 



 
Figure 1. Variogram fitting for available fields at different depths. 

 
     Finally, the Oi distributions have shown that the proposed model could have a 
stable response when applied to different PA technologies at different 
management practices (Table 3). Importantly, correlations between index values 
and its associated components could also reflect an ability to incorporate both the 
magnitude and spatial nature of the encountered production variability in a 
manner that matches the physical understanding of the data produced by the 
respective sensing systems. In this case, the more continuous and less variable 
nature of the soil ECa data at field scale contributes to the relatively lower values. 
 
 

 
Figure 2. Interpolation of ECa maps for available fields at different depths. 

 
 



 
Table 3. Distribution of index values and its component correlations using 

different sensors as input for the PA adoption opportunity index. 

Sensor # Opportunity Index (Oi) r (Sv) r (Mv) 
Min. Med. Max. 

Yield (Yi) 218 1.6 5.2 17.3 0.82 0.85 

Imagery (Ii_NDVI) 97 2.6 7.7 18.1 0.82 0.71 

ECa by induction (Si_EM) 44 2.0 3.7 9.0 0.83 0.94 

ECa by contact (Si_Veris) 8 2.0 3.8 6.4 0.53 0.72 
 
     Results from this preliminary application of the opportunity index on the 
electrode-coulter-based contact sensor (Si_Veris) for different fields and depths have 
fit within typical Si_EM values reported for non-contact electromagnetic-induction 
sensors in Australia (Table 3). Furthermore, Si_Veris values for all fields have 
shown spatial relationship with topography and the spatial distribution of soil 
variation previously observed. Variogram fitting and index parameters could be 
mostly explained by current agronomic knowledge on specific no-tillage 
production systems, suggesting that adjusted indices could show actual potential 
for the adoption of PA technology. 
     The rationale for an opportunity index as first overviewed on the spatial 
variation of soil properties aims at identifying the farm areas where the cost of 
gathering further site-specific data is best matched by site-specific management 
results. Once adjusted and standardized across different production systems and 
regions, opportunity indices could support quantitative threshold information to 
determine whether the observed variability warrants differential treatment. It can 
also give some extra insights of factors affecting variability. With the large 
volume of data obtained upon the adoption of PA by family farms and producer 
associations, the field median indices could be used to rank the opportunity of 
fields per farm. If a fair distribution of samples is available, farm median indices 
could be used to rank the opportunity of farms per region. 
 

CONCLUSIONS 
 
     Opportunity indices calculated from on-the-go soil ECa sensors and crop 
reflectance imagery have shown potential support for farmer’s decisions on the 
adoption of PA technology when spatially dense data on crop yield are 
unavailable. The applied method has proven to be stable and robust over a variety 
of crop management systems and input data characteristics for Australian and 
Brazilian applications. Yet, model calibration is required to reflect the actual 
adoption opportunity for Brazilian standards on variable-rate machinery and 
operational management practices. As an example, the adjustment of the 
machinery related kernel area to operate. 
     Results from this preliminary application of the opportunity index with data 
from an adapted electrode-based contact sensor (Si_Veris) may justify a systematic 
application of methods for additional production areas related to the Brazilian 



Precision Agriculture Research Network. Model parameters could be mostly 
explained by specific knowledge on no-till production systems, suggesting that 
adjusted indices could support the adoption of PA technology. 
     General index results suggest that new input data applications could be 
considered for the original yield-monitor data related concept (Oi). Therefore, 
several within-field variability aspects can be estimated using alike parametric 
methods in accordance to a specific adopted technology; as: yield and soil ECa 
sensors, or several imagery derived vegetation and plant related indices (e.g. Yi, 
Si_EM38V, Si_EM38H, Si_EM31V, Si_Veris, Ii_NDVI, Ii_PlantCellDensity).  
     Combined with local field management knowledge over multiple seasons, 
normalized indices could provide a valuable indicators supporting efficiency in 
crop management. Still, there is a need to face a greater challenge surrounding the 
incorporation of ecological and economic aspects in order to achieve a further 
understanding of the opportunity assessment. 
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