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ABSTRACT 
 
     Conducting inter row mechanical weeding requires the precise location of each 
individual crop plant is known. One technique is to record the global position of 
each seed when sown using  RTK-GPS systems. Another approach is to capture 
images of the crop row and then use image processing and machine learning to 
identify crop and weed plants based on leaf shapes. A third approach is to 
distinguish crops from weeds by detecting the relative location of all plants and 
use the fact that many crop plants are sown in a distinct patterns to maximize the 
yield. 
Although using precision RTK-GPS systems the position estimate still have a 
significant error. Crop detection in images using object recognition techniques 
suffer from the fact that local factors both regarding time and geographically 
location influence the plant structure and color. 
This paper addresses the problem of inter row weeding by suggesting a system 
that uses spatial information in an offline algorithm to detect the most likely crop 
plants in recorded data. The detected crop and weed plants are then used to 
construct a shape based classifier to be used for online classification of unknown 
plant objects. The practical approach is to first record a small amount of data from 
the field in question. This data is then analysed and plant objects obeying a 
specific grid pattern is marked as crop plants and used in the second step to train a 
shape based classifier. Now the rest of the field can be treated using the 
specialized shape classifier. This system is more robust since it learns the current 
appearance of the crop in a field instead of relying on a general model. Tests have 
been conducted where the practical approach have been followed. Sample data 
has been recorded with the Robovator precision weeder in several beet-fields. 
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INTRODUCTION 
 
     Presicion agriculture requires detailed information about fields. If the weed 
density or composition of weed species in a small patch is known an intelligent 
application of herbicides can be conducted considering economic and 
environmental trade offs. If weeding is to be done on a single plant scale it is not 
enough to consider patches - one have to address single plants. Research have 
been conducted involving the development of systems capable of classifying 
single plants (Tian et al., 1997, Weisa et al., 2007, Giselsson, 2010) and have 
done so with relative success but still no general, robust system exists. 
     Systems that utilize the fact that many crops are sown or transplanted in rows 
or grids are widely used. Row detection systems for steering mobile farming 
equipment are already commercially available e.g Claas Cam Pilot(claas.com). 
Some researchers tries to exploit the fact that to optimize yield, crops are often 
placed with a certain spacing inside the rows. Onyango and Marchant, 2003, fit a 
grid onto images of patches and use this information to build a statistical model of 
the likelyhood of crop plant pixels with respect to pixel coordinate in the system. 
Åstrand and Baerveldt, 2005, had a similar approach as Onyango and Marchant, 
2003, except that they fitted a gaussian mixture model onto segmented images 
and found the most likely crop plants.  
     Midtiby, 2012, uses spatial context information to do real time predictions of 
the position of the next unseen crop on the basis of the latest few detected crops.  
In this paper we take one step further towards a general system capable of 
distinguishing crops from weeds using both spacial context information and 
object shape appearance. The hypothesis is that building a training set of samples 
present in the field in question makes is possible to better take into account 
variations in the plants due to e.g. growth stage, nutrition and weather conditions. 
To accomplish this the procedure is to first record data from the field and carry 
out offline analysis of the data using knowledge about sowing geometry or detect 
the most dominant systematic geometry in all plant material. The result of this 
offline process is candidates of crops and weeds. Highly likely crops and weeds 
are extracted and used as training samples for a shape based classifier. This 
classifier can be used online to recognize plants in the rest of the field in question. 
To improve accuracy of the classifier context information of detected crops are 
also used online to predict positions. 
Results from simulated field data indicated that the concept works and have 
potential to overcome the difficulties in constructing a general plant classifier. 
Further test have been planned to verify the usability of the procedure. 
 

MATERIALS AND METHODS 
 
     As mentioned the weeding procedure that is documented in this paper have 2 
phases. First phase is the learning phase where the condition of the crops in a 
specific field is learned. In the second phase weeding is executed using acquired 
information. In the following section used equipment and methods are described. 



 

 
Mechanical tools 

 
     The physical aspects of this process can be carried out by the Robovator field 
robot developed by Frank Poulsen Engineering (see visionweeding.com). The 
Robovator has the ability to both carry out data acquisition and mechanical 
weeding. 
     Data is stored in the form of bispectral images recorded by two line cameras 
recording the red and near-infrared wavelength respectively. It records in a 
continuous manner and track displacements mechanically so the end result are 
image lines of red and near-infrared stamped with a relative displacement. This 
makes it possible to stitch image lines together where speed changes have been 
taken into account. The physical resolution of each pixel is approximately 1.1 mm 
x 1.1 mm. The fact that image line data can be collected into long strips obeying a 
fixed physical resolution enables the analysis of plant positions over long 
distances. The use of bispectral cameras ease the segmentation of plant material 
from soil by using the widely applied NDVI color mapping (Rouse et al., 1973) 
followed by thresholding. 
     Weeding is conducted by knives placed horizontally and slicing through the 
soil 1 to 2 cm below the surface. These knives are mounted on pneumatic arms 
that are able to either place the knives inside the crop row or in the inter row strip. 
The Robovator can be seen on figure 1. 

 

 
Fig. 1. Picture of the Robovator performing mechanical weeding in 
transplanted lettuce. Source: visionweeding.com 
 



 

Detecting whether plants is inside the row structure, phase 1 
 
     From the acquired image we want to extract vegetation blobs that are highly 
likely to be belong to either the crop or weed class. These samples are determined 
by calculating a position score for each of the observed plants. High values of the 
position score indicates that the plant is a part of the row structure and similarly 
low values indicate plants placed outside of the row structure. For calculating the 
position score, the expected distance between neighbouring crop plants must be 
known, this distance is used to find the location of expected neighbour crop 
plants. The two nearest expected crop plant locations were determined and the 
position score was calculated based on the distance from the expected crop plant 
location to the nearest plant to that location. The position score is described in 
detail in (Midtiby, 2012).  
     The plants were ordered by their position scores. Training samples for the crop 
class consisted of the N plants with highest position scores. N was defined as 90% 
of the expected number of crop plants, C, in the acquired image. Weed training 
samples consisted of the 0.5 M plants with lowest position scores, where M was 
the number of plants observed subtracted the expected number of crop plants. 
     The method was tested on simulated data where crops were placed with a fixed 
spacing although subject to variation according to a noise model. Weed plants 
were placed random in the field. A subpart of the simulated field strip is depicted 
in figure 2.  Figure 2.A shows the true crops and figure 2.B the true weeds and 
figure 2.C is the combined field strip. Figure 3 shows the result of applying the 
position score algorithm. Plants with dark shading have high position score. 
 



 

 
Fig. 2  A: Subpart of true crop plants - corn flower (Centaurea cyanus) is 
used as crop. B: Subpart of true weed plants - night shade (Solanum nigrum) 
is used as weed. C: Subpart of the generated field strip with both crops and 
weeds. 
 
 
 

 
Fig.  3.  Outcome from position score algorithm where intensity of each plant 
is related to its calculated position score value. 



 

Training classifier, phase 2 
 
     Using the output from the offline algorithm which consist of highly likely crop 
samples and highly likely weed samples a shape classifier is trained. For each 
sample a number of shape features are calculated. In Giselsson et al. (2012) 21 
numeric shape features widely used in the literature of object recognition (e.g. in 
Du et al., (2007), Åstrand & Baerveldt (2002), Woebbecke et al., (1995), Mei 
(2010), Weis & Gerhards (2007)) were compared with shape features based on a 
parametrization of a distance transform, referred to as LPFS. In this work we have 
chosen to only use the Legendre Polynomial Feature Set (LPFS) since the former 
mentioned paper concluded that this feature set perform equally well or better 
than often used standard shape features. This feature set consist of 10 numerical 
features. 
     The performance of the LPFS features can vary with different data 
preprocessing. In this work we have chosen to conduct a data normalization step 
on the calculated distance maps as described in Giselsson et al. (2012). This 
normalization means that the generated features will be robust against scale 
changes. 

 
     As a classifier scheme for this research we chose a nonlinear Radial Basis 
Function Support Vector Machine, RBF-SVM, since it has been reported to 
achieve good results (Giselsson et al, 2012, Giselsson, 2010, Singh, 2010). The 
SVM is based in statistical learning theory and finds the best separating plane 
between two classes by maximizing the margin between the separating plane and 
those samples from each class that are closest to the separating plane. The training 
process therefore consist of solving a optimization problem. The method can 
handle non separable classes by introducing slack variables into the optimization 
problem and thereby also introducing a parameter, C, that controls the trade off 
between allowed misclassifications and speicalization of the classifier. Using the 
kernel trick the method can be expanded to be nonlinear. The kernel used in this 
research is the widely used Radial Basis Function kernel that introduces another 
parameter, gamma. The training phase contains the need to estimate optimal or 
suboptimal values for C and gamma and to solve the optimization problem. In this 
research the Prtools matlab toolbox (Pekalska et al., 2007) have been used for 
parameter estimation, training and testing.  
  



 

RESULTS 
 
     In the simulation 141 plant objects were found. According to the known inter 
crop plant distance a total of 48 crop plants were expected so C=48 and hence N= 
approximately 43. The quantity M was 141-43 = 98 so the number of extracted 
highly likely weed plants was 98*0.5 = approx 49. This means that the classifier 
will be fet with 43 likely crop plants and 49 likely weed plants. In the simulation 
the extracted crop plants consisted of 37 true crop plants, 3 mislabelled weed 
plants and 2 unknown objects. Likewise the extracted weeds consisted of 40 true 
weeds, 0 mislabelled crop plants and 4 unknown samples. In total 86 samples 
were extracted of which 77 were true positives resulting in a accuracy of 90 %. 
 
     Using likely crop and weed samples from the context based learning phase a 
SVM-RBF classifier is trained. Used samples amounted to 43 likely crop samples 
and 49 likely weed samples. Using stratified cross validation with 10 folds on this 
data set result in a classification accuracy of 82.8 %. Parameters used for the 
RBF-SVM classifier were C=0.4138 and gamma = 0.088.  It is important to 
remember that this classifier is trained with data containing mislabeled samples 
and therefore the classification accuracy will be lower for that reason. When using 
the trained classifier on unseen but correctly labeled data consisting of 69 samples 
of crops and 30 samples of weed a classification accuracy of 85 % was achieved.  
 

CONCLUSION 
 
     Extraction of highly likely crops and weeds from a simulated field strip using 
only context information achieved an accuracy of 90 %. 
     A classification accuracy of 85 % was achieved on correctly labeled samples 
after training an RFB-SVM classifier on data with 10 % label errors. The 
classifier was based on shape features called LPFS. 
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