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ABSTRACT 
 

In an agricultural field, monitoring both spatial and temporal variability of soil 
conditions are important to determine the variable rate application of agricultural 
inputs. As an example, by monitoring soil water content, this information may be 
used to determine the amount and timing of irrigation. On-the-go soil sensing 
technology rapidly provides high-resolution, multiple data layers of soil spatial 
variability at a relatively low cost. Proper locations and the optimal number of soil 
monitoring sites need to be identified. In this paper, seven agricultural fields in 
Nebraska were mapped using on-the-go soil sensing technology. Apparent soil 
electrical conductivity (ECa) and field elevation were used to estimate crop water 
supply potential. In a 37-ha agricultural field in Nebraska, nine locations were 
selected for monitoring soil matric potential and temperature using wireless 
technology. The Water Stress Index (WSI) used for indicating the soil water 
condition was determined in this particular field. The regression model was 
generated and applied to six other fields to simulate WSI surfaces. In these six 
fields, monitoring sites were chosen by two different methods: randomly chosen 
and manually chosen, using optimal criteria. The MSE of an estimated WSI 
surface based on monitoring locations chosen by these two methods and a “real” 
one was used to determine the integrity of the methods.  
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INTRODUCTION 

 
In an agricultural field, both spatial and temporal variability of soil conditions 

are critical to determine variable rate application of agricultural inputs. As an 
example, to achieve precision irrigation, it is important to monitor soil water 
content to determine the amount and timing of irrigation. Conventional, on-the-
spot evaluation of soil conditions is somewhat subjective and labor-intensive. In 



addition, soil variability within a field can be extensive, which means that 
defining representative locations to make irrigation management decisions is 
challenging. 

By contrast, on-the-go soil sensing technology provides an opportunity to 
rapidly obtain high-resolution multiple data layers of soil spatial variability at a 
relatively low cost (Adamchuk et al., 2004). Unfortunately, the relationships 
between data detected on-the-go and agronomic soil parameters, such as water 
content, are frequently site-specific. Therefore, sensor-based maps have been used 
to define the spatial variability of soil properties that influence water movement 
across a landscape (Hedley, 2009).  

Furthermore, the amount of water stored in the soil profile changes both 
spatially and temporally. Wireless technology has been used increasingly to 
monitor soil conditions. Such systems allow the producer to obtain information 
about soil water conditions, temperature, and other properties in real time from a 
remote location (Kim et al., 2009). Irrigation systems managers have used the 
data to optimize the use of resources in response to dynamic changes in soil 
conditions and to reduce the risk of crop water stress (Han et al., 2009; Omary et 
al., 1997; Rodrigues et al., 2003).  

As a precondition to apply wireless technology, the number of locations 
within the field needs to be selected. This is not trivial and is mostly subjective. 
Practitioners who use high-resolution data layers from the field to determine 
monitoring locations rely on the following general rules: 1) cover the entire range 
of data from each source, 2) avoid field boundaries and other transition zones, and 
3) spread locations over the entire field. While these criteria are useful, they do 
not translate into an operational algorithm and, therefore, can produce numerous 
outcomes with different degrees of satisfaction. In principle, this process is 
similar to prescribing targeted sampling locations needed to either calibrate high-
resolution data, or to quantify agronomic soil attributes of established 
management zones (Lesch, 2005; Minasny and McBratney, 2006; Brus and 
Heuvelink, 2007; de Gruijter et al., 2008).  

The objective of this research was to provide an analytical methodology for 
optimally locating a set of strategic locations for soil moisture monitoring with 
optimized performance-to-cost ratios in an agricultural field.  
 

MATERIALS AND METHODS 
 

Seven agricultural fields in Nebraska were chosen and mapped using on-the-
go sensing technology with a Veris® 3150 unit (Mobile Sensor Platform, Veris 
Technologies, Inc., Salina, Kansas)1 equipped with an RTK-level AgGPS® 442 
GNSS receiver (Trimble Navigation Ltd., Sunnyvale, California). Soil apparent 
electrical conductivity (ECa) and elevation were used to estimate crop water 
supply potential. In one of these fields (a 37-ha field (Field 1.14) at the 
Agricultural Research and Development Center near Mead, Nebraska), nine 

                                                           
1 Mention of a trade name, proprietary product, or company name is for presentation clarity and 
does not imply endorsement by the authors, McGill University, or the University of Nebraska-
Lincoln, nor does it imply exclusion of other products that may also be suitable. 



locations were selected for monitoring soil matric potential and temperature using 
wireless technology (Pan et al., 2011). The WSI used for indicating soil water 
supply was determined in this field. A regression model was generated and 
applied to six other fields to generate field surfaces of WSI. In these six fields, 
monitoring sites were chosen by two different methods: randomly chosen and 
manually chosen using optimization criteria. Based on the chosen monitoring sites, 
new regression models could be generated and applied to predict WSI surfaces. 
The MSE of the predicted surface and of the “real” one was used to determine the 
reliability of the methods for selecting the monitoring sites.  

 
Optimization Criteria 

 
The definition of the optimum guided sampling scheme is quite vague. There 

are many parameters that can quantify 1) spatial separation, 2) spread across sets 
of measurements and 3) local homogeneity within each set of measurements. 
Furthermore, there are several alternatives to derive the overall objective function 
as a combination of these parameters. In this study, to define soil water content 
monitoring sites, ECa and field elevation maps shown in Fig. 1 were analyzed 
using three combined optimization criteria (Adamchuk et al., 2011). These criteria 
included: (1) complete spatial field coverage using the S-optimality criterion 
(SAS, 2008); (2) even distributions throughout both data layers using the 
D-optimality criterion (SAS, 2008); and (3) the relative homogeneity of the 
selected sites using a criterion developed based on the sum of squared differences 
between the measurements obtained in each location and its immediate neighbors. 
The overall objective function was the geometric mean of these criteria 
normalized against the median of a large number of random selections. The same 
optimization criteria were used to determine monitoring sites for six other fields 
in this study. 

 
Fig. 1. Maps of topsoil ECa and field elevation with sensor installation 
locations (Field 1.14 at the University of Nebraska-Lincoln Agricultural 
Research and Development Center (Mead, Nebraska)). 
 

WSI Regression Model 
 

In this study, measurements collected during the growing season (99 days 
from late June to early October) at the nine sensor installation locations were used 
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to calculate WSI values. The daily average WSI for each node was used to 
establish the regression model with ECa and field elevation value collected at each 
location. The model was as following:   

 ElevECElevECWS aa ⋅⋅+⋅+⋅+= 3210  I ββββ    (1) 
where ECa is apparent electrical conductivity, mS/m; Elev is relative field 

elevation (subscribed from the median value), m; β0, β1, β2, β3 are model 
coefficients. 

For each of the 99 days when data was collected in 2009, the WSI regression 
model was generated. The coefficients of the model which represent the major 
condition and can be generated in the day with the highest average number of 
WSI values thus indicating the driest soil status; this was applied to the six other 
experimental agricultural fields to calculate WSI values for the entire field based 
on the known ECa and field elevation. The field elevation for generating the 
model was adjusted by subscribing the mean value for each field in order to 
compensate for the effect of variable field elevation. 

 
Simulation Analysis 

 
In order to verify the necessity of optimal criteria to determine strategic 

sampling locations, the error surface with different spatial distribution patterns 
were generated and applied on the calculated WSI surface to simulate the “real” 
WSI data layer. All three error surfaces have the same sill values, which was 
determined using the MSE of the generated WSI regression model with data from 
the ARDC field. Different values of nugget and range were applied in order to 
generate three error surfaces with different levels of smoothness. The variogram 
for these three error surfaces are shown in Fig. 2.  

 

 
Fig. 2. Variogram for three error surfaces (error surface 1: completely 
random with sill of 0.04; error surface 2: sill=0.04, nugget=0, range=300 m; 
error surface 3: sill=0.04, nugget=0.02, range=150 m). 
 

For all six fields (BR, HS, HU, KR, LU, and RU) used for assessment in this 
study, ECa and field elevation (Fig. 3 shows the maps for Field HS as an example) 
data layers were divided with a 10 by 10 m grid. For each grid, the WSI value was 
calculated with the regression model mentioned above using ECa and field 

0

0.01

0.02

0.03

0.04

0.05

0 100 200 300 400 500 600

error surface 1

error surface 2

error surface 3



elevation values. Adding the calculated WSI surface with the generated error 
surface, the surface of WSI was simulated and regarded as the “real” WSI surface 
used for validation.  

The quality of the selection of monitoring sites with the given number of them 
(5 and 10) was assessed. Both random selection and manual selection based on 
the optimization criteria were used to determine the set of strategic sampling 
locations, and the MSE of the “real” WSI surface and the estimated WSI surfaces 
using the chosen sites was used as the parameter to determine the quality of 
selection.  

  
(a) (b) 

Fig. 3. Maps of a) ECa, b) field elevation (Field HS as an example). 
 
 

RESULTS AND DISCUSSION 
 

The WSI maps shown in Fig. 4(a) were generated based on the regression 
model obtained using the ARDC field data layers. The coefficients for intercept, 
ECa, field elevation and the interaction were fixed for all six fields. These four 
coefficients were obtained from the regression model for July 30, 2009 (the driest 
day of the season): 

 ElevECElevECWS aa ⋅⋅+⋅−⋅−−= 08.040.013.00.26  I   (2) 
To simulate the “real” field surface of WSI, the error surface was generated 

with three different spatial distribution patterns as summarized in Fig.2. Error 
surface 1 which was randomly distributed had a completely random spatial 
pattern. By contrast, error surfaces 2 and 3 had smoother patterns. Error surface 2 
had the highest level of geo-correlation patterns among these three. The three 
generated “real” WSI surfaces according to three simulated error surfaces were 
shown in Fig. 4(b-d) using Field HS as an example.  

Both the random selection and the manual selection methods were based on 
the optimization criteria method used for selecting monitoring sites. Fig. 5 shows 
the manually chosen monitoring sites with a given number (5 and 10) while 
showing the relationship between ECa and the field elevation. For the randomly 
selected locations, 20 sets of selection were used to calculate MSE values 
between the “real” WSI surface and the one predicted based on the selection of 
locations.  
 



  
(a) (b) 

  
(c) (d) 

Fig. 4. Maps of a) calculated WSI surfaces, b) “real” WSI surface 1, c) “real” 
WSI surface 2, and d) “real” WSI surface 3 (Field HS as an example). 

 

 
Fig. 5. Relationship between ECa and field elevation (Field HS as an 
example). 
 

Fig. 6 provides the summary of MSE values for both selection methods. It is 
obvious that with a larger number (10) of monitoring locations, even when a 
random selection set was used, the prediction of WSI surface was accurate. When 
the number was 5, due to the small amount of monitoring locations, there was a 
greater risk of obtaining a large MSE value, which indicates a large variance 
between predicted WSI surface and the “real” one. With the same preset number 
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of monitoring locations, the manual selection of monitoring locations generated 
smaller MSE values compared to the median MSE values using the random 
selected locations, eliminating the probability of predicting the WSI surface 
which has considerable difference between the predicted and the “real” one. 
 

 
(a) 

 
(b) 

Fig. 6. Summary of MSE values for the predicted WSI surface and the “real” 
one: a) 5 monitoring locations, b) 10 monitoring locations. 
 

CONCLUSIONS 
 

In this research, apparent soil electrical conductivity and field elevation data 
layers were mapped using on-the-go soil sensing technology; they were used to 
estimate crop water supply potential. WSI values for sites with sensors installed 
were calculated and used to generate the regression model depending on apparent 
soil electrical conductivity and field elevation data in one field. To assess the 
effect of monitoring sites selection, the “real” WSI surfaces were obtained by 
adding the calculated WSI surface and the simulated error surfaces with different 
spatial distribution patterns. A random selection method and a manual selection 
method based on optimization criteria were applied and compared by checking 
the MSE of the predicted WSI surfaces and the “real” one. The optimized 
selection of monitoring locations was helpful to eliminate the chance of choosing 
locations unrepresentative in both the small (5) and the large (10) number of 
locations. When the smaller number of monitoring sites was used, the optimized 
selection was more critical for a reliable prediction. This study provides the 
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methodology for optimizing the selection of monitoring sites as well as 
optimizing the number of sites to maximize the performance-to-price ratio. 
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