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ABSTRACT 
 
Cotton root rot, caused by the soilborne fungus Phymatotrichopsis omnivore, is 
one of the most destructive plant diseases occurring throughout the southwestern 
United States. This disease has plagued the cotton industry for more than 100 
years, but effective practices for its control are still lacking. Recent research has 
shown that a commercial fungicide, flutriafol, has potential for the control of 
cotton root rot. To effectively and economically control this disease, it is 
necessary to identify infected areas within the field so that variable rate 
technology can be used to apply fungicide only to the infected areas. The 
objectives of this study were to evaluate two vegetation indices, the simple ratio 
index (SRI) and the normalized difference vegetation index (NDVI), and four 
supervised classification techniques, including minimum distance, Mahalanobis 
distance, maximum likelihood, and spectral angle mapper (SAM), for detecting 
cotton root rot from airborne multispectral imagery. One cotton field with a 
history of root rot infection in south Texas was selected for this study. Airborne 
multispectral imagery with blue, green, red and near-infrared bands was taken 
from the field shortly before harvest when infected areas were fully expressed for 
the 2011 growing season. The two VIs were derived from the multispectral 
imagery and then statistically grouped into infected and noninfected classes. The 
four-band image was classified into infected and non-infected zones using the 
four classifiers based on training samples from the image. Accuracy assessment 
on the two-zone classification maps showed that all six methods accurately 
identified root rot-infected areas within the field with accuracies from 94.5 to 
96.5%. The results of this study will be useful for effective detection of cotton 
root rot and for site-specific management of this disease. 
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INTRODUCTION 
 

Cotton is an economically important crop that is highly susceptible to cotton 
root rot, a destructive plant disease that occurs throughout the southwestern U.S. 
Infected plants wilt and quickly die with the leaves attached to the plants (Smith 
et al., 1962). The symptoms usually begin during the period of rapid vegetative 
growth, are more visible during flowering and fruit development, and continue to 
increase through the growing season. Plants infected earlier in the growing season 
will die before bearing fruit, whereas infection occurring at later plant growth 
stages will reduce cotton yield and lower lint quality (Ezekiel and Taubenhaus, 
1934; Yang et al., 2005). 

Cotton root rot is an age-old problem and has plagued the cotton industry 
for more than 100 years. Despite decades of research efforts, effective practices to 
control this disease are still lacking. More recently, new fungicides have been 
evaluated and a commercial formulation of flutriafol (Topguard® - Cheminova, 
Inc., Wayne, NJ) was found to effectively control cotton root rot (Isakeit et al., 
2009, 2010). To effectively and economically control this disease, it is necessary 
to identify infected areas within the field so that variable rate technology can be 
used to apply fungicide only to infected areas. 

Remote sensing has been successfully used to map cotton root rot infections 
in cotton fields (Nixon et al., 1987; Yang et al. 2005, 2010). Preliminary work has 
been done to monitor the progression of the disease within a growing season or 
across different growing seasons (Yang et al., 2011). In previous studies, 
unsupervised classification directly applied to imagery has been used to identify 
root rot-infected areas. However, many other spectral measures and classification 
techniques may offer advantages. Therefore, the objectives of this study were to 
evaluate two most commonly used vegetation indices, the simple ration index 
(SRI) and the normalized difference vegetation index (NDVI), and four 
supervised classification techniques, including minimum distance, Mahalanobis 
distance, maximum likelihood, and spectral angle mapper (SAM), for detecting 
cotton root rot from airborne multispectral imagery. 
 

METHODS 
 

Study site 
 

A center-pivot irrigated cotton field near Edroy, TX, (28°00′5″ N, 
97°38′33″ W) was selected for this study. This field had a history of cotton root 
rot. Cotton and grain sorghum have been cropped alternately in the field and 
cotton was planted in the field in 2011. 

 
 



 

Airborne multispectral image acquisition 
 
An airborne four-camera imaging system described by Yang (2010) was 

used to acquire multispectral imagery. The system consists of four high resolution 
CCD digital cameras and a ruggedized PC equipped with a frame grabber and 
image acquisition software. The cameras are sensitive in the 400 to 1000 nm 
spectral range and provide 2048 × 2048 active pixels with 12-bit data depth. The 
four cameras are equipped with blue (430-470 nm), green (530-570 nm), red 
(630-670 nm), and near-infrared (NIR, 810-850 nm) bandpass interference filters, 
respectively. A Cessna 206 single-engine aircraft was used to acquire imagery 
from the field at an altitude of 3050 m (10000 ft) between 1130h and 1430h local 
time under sunny conditions on July 13, 2011. The ground pixel size achieved 
was approximately 0.9 m. 
 

Image alignment and rectification 
 

An image-to-image registration procedure based on the first-order 
polynomial transformation model was used to align the four individual band 
images in the composite image. The registered images were then georeferenced or 
rectified to the Universal Transverse Mercator (UTM), World Geodetic Survey 
1984 (WGS-84), Zone 14, coordinate system based on a set of ground control 
points around the field located with a Trimble GPS Pathfinder ProXRS receiver 
(Trimble Navigation Limited, Sunnyvale, California). The root mean square 
(RMS) errors for rectifying the images using first-order transformation were 
approximately 2 m. All images were resampled to 1 m resolution using the nearest 
neighborhood technique. All procedures for image registration and rectification 
were performed using ERDAS Imagine (ERDAS Inc., Norcross, Georgia). 
 

Vegetation Indices 
 

The simple ratio index (SRI = NIR / Red) (Jordan, 1969) and the 
normalized difference vegetation index [NDVI = (NIR − Red) / (NIR + Red)] 
(Rouse et al., 1973), were calculated from the multispectral image. The SRI and 
NDVI images were then classified into two spectral classes using ISODATA 
(Iterative Self-Organizing Data Analysis) unsupervised classification (ERDAS, 
2010). This method ensures that each pixel is assigned to the class that has the 
minimum spectral distance to the pixel. Thus the two vegetation index images 
were each classified into root rot-infected and noninfected zones. ERADAS 
Imagine was used for this analysis. 

 
 

Supervised classification 
 

Based on ground observations, cotton root rot was the only dominant 
stressor affecting the field, even though some minor biotic and abiotic stressors 
may have been present. However, since the fungus can cause such a devastating 
effect on the plants, it has a very unique signature on the airborne image 
compared with other stressors such as nutrient deficiencies and minor insect 



 

damage. Therefore, the field can be classified into root rot-infected areas and 
noninfected areas.  

Four supervised classification methods, including minimum distance, 
Mahalanobis distance, maximum likelihood, and spectral angle mapper (SAM), 
were applied to the four-band multispectral image. The minimum distance 
classifier uses the class means derived from the training data and assigns each 
pixel to the class that has the closest Euclidean distance from the pixel (Campbell, 
2002). The Mahalanobis distance method is similar to minimum distance, except 
that the covariance matrix is used in the calculation (ERDAS, 2010). Each pixel is 
assigned to the class for which Mahalanobis distance is the smallest. Maximum 
likelihood classification assumes that the data for each class in each band are 
normally distributed and it calculates the probability that a given pixel belongs to 
a specific class (Richards, 1999). Each pixel is assigned to the class that has the 
highest probability (i.e., the maximum likelihood). Spectral angle mapper or SAM 
is a spectral classification technique that uses the n-dimensional angle to match 
pixels to endmembers (Kruse et al., 1993).  The algorithm determines the spectral 
similarity between a pixel spectrum and an endmember spectrum by calculating 
the angle between them, treating them as vectors in a space with dimensionality 
equal to the number of bands. Each pixel is assigned to the endmember whose 
spectrum has the smallest spectral angle with the pixel spectrum. 

For supervised training, a number of infected and noninfected areas were 
identified and digitized on the multispectral image as the training samples to 
represent respective classes. The numbers of digitized training pixels were 1927 
for the infected class and 2265 for the noninfected class. The same circular ROI 
boundary was used to exclude the areas outside the boundary for image 
classification. Each classifier resulted in a two-class classification map. ENVI 
(Research Systems, Inc., Boulder, Colorado) was used for supervised 
classification. 
 

Accuracy assessment 
 

For accuracy assessment of the two vegetation index-based classification 
maps and the four supervised classification maps, 200 points were generated and 
assigned to the two classes in a stratified random pattern. Since the classes for a 
large majority of these points could be accurately determined from the color and 
color-infrared (CIR) images for the field, only a few points were located in the 
transitional areas where their classes could belong to either class. Error matrices 
for each classification map were generated by comparing the classified classes 
with the actual classes at these 200 points. Classification accuracy measures, 
including overall accuracy, kappa coefficient, producer’s accuracy, user’s 
accuracy, were calculated based on the error matrices (Congalton and Green, 
1999).  
 

RESULTS AND DISCUSSION 
 

Figure 1 shows the normal color and CIR composite images acquired from 
the field shortly before harvest in 2011. On the normal color image, noninfected 
plants had a green color, whereas infected plant had a brownish or grayish tone. 



 

On the CIR image, noninfected plants showed a reddish-magenta tone, while 
infected plants had a cyanish or light greenish color. Root rot-infected areas could 
be easily separated from the noninfected areas on both images, especially on the 
CIR image. Cotton root rot progressed across much of the field and continued to 
develop in the north edge of the field toward the later part of the growing season.  

 

 
Fig. 1. Airborne normal color and color-infrared (CIR) images acquired 
from a 48.5-ha cotton root rot-infected cotton field near Edroy, TX in 2011.  
 
 

 
Fig. 2. Simple ratio index (SRI) image and normalized difference vegetation 
index (NDVI) image derived from a multispectral image for a 48.5-ha cotton 
root rot-infected cotton field near Edroy, TX in 2011. 
 



 

 
Figure 2 shows the SRI and NDVI images derived from the multispectral 

image for the field. Infected areas had lower values and exhibited a dark grayish 
color. Noninfected areas had higher values and showed a light gray tone. The very 
dark color on the images represent areas with dead dry plants, whereas the slightly 
dark color in the north and northeast portion of the circular field indicate infected 
plants that were not completely dry. Both SRI and NDVI images reveal similar 
patterns. 
 Figure 3 shows the two-zone classification maps based on the two 
vegetation indices and the four supervised classifiers. A visual comparison of the 
classification maps and their respective color and CIR images indicated that all 
the classification maps effectively identify apparent root rot areas within the field 
and that there were minimal differences among them.  
 

 
Fig. 3. Two-zone classification maps based on six methods from a four-band 
multispectral image of a 48.5-ha cotton root rot-infected cotton field near 
Edroy, TX in 2011. SRI = NIR / Red, NDVI = (NIR – Red) / (NIR + Red), 
MD = minimum distance, MAHD = Mahalanobis distance, ML = maximum 
likelihood, and SAM = spectral angle mapper. 
 
 

Table 1 gives the estimates of infected and noninfected areas in pixels, 
hectares and percentage based on the six methods. Infected area estimates ranged 
from 40.5% with the maximum likelihood classifier to 45.8% with SRI. Table 2 



 

presents the agreement values for the estimated infected areas between any two 
methods based on a pixel-to-pixel comparison. For example, the SRI method 
detected 222,261 pixels of infected areas and the minimum distance method 
identified 214,958 pixels of infected areas. The total number of common pixels 
identified by both methods was 214,486. Thus the agreement between the two 
methods was 214,486/222,261 = 0.965 with respect to the SRI method and 
214,486/214958 = 0.998 with respect to the minimum distance method. The 
agreement values between any two methods ranged from 0.883 to 1.000, 
indicating a high degree of agreement among the six methods. 

 
 

Table 1. Estimates of infected versus noninfected areas in pixels, hectares and 
percentage based on six methods from a four-band multispectral image of a 
48.5-ha cotton root rot-infested cotton field near Edroy, TX in 2011. 

 
Method[a] Infected Noninfected 

Pixels ha (%) Pixels ha (%) 
SRI 
NDVI 
MD 
MAHD 
ML 
SAM 

222261 
204239 
214958 
204087 
196480 
217250 

22.2 
20.4 
21.5 
20.4 
19.6 
21.7 

45.8 
42.1 
44.3 
42.1 
40.5 
44.8 

262631 
280653 
269934 
280805 
288412 
267642 

26.3 
28.1 
27.0 
28.1 
28.8 
26.8 

54.2 
57.9 
55.7 
57.9 
59.5 
55.2 

[a] SRI = NIR / Red, NDVI = (NIR – Red) / (NIR + Red), MD = minimum 
distance, MAHD = Mahalanobis distance, ML = maximum likelihood, and 
SAM = spectral angle mapper.  

 
 
Table 2. Agreement between each pair of the methods for identifying infected 

areas from a four-band multispectral image of a 48.5-ha cotton root rot-
infested cotton field near Edroy, TX in 2011. 

 
Method[a] SRI NDVI MD MAHD ML SAM 
SRI 
NDVI 
MD 
MAHD 
ML 
SAM 

1.000 
1.000 
0.998 
0.989 
0.999 
0.999 

0.919 
1.000 
0.950 
0.961 
0.985 
0.940 

0.965 
1.000 
1.000 
0.986 
0.996 
0.984 

0.909 
0.960 
0.936 
1.000 
0.995 
0.922 

0.883 
0.948 
0.910 
0.957 
1.000 
0.900 

0.977 
1.000 
0.994 
0.981 
0.996 
1.000 

 
[a] SRI = NIR / Red, NDVI = (NIR – Red) / (NIR + Red), MD = minimum 

distance, MAHD = Mahalanobis distance, ML = maximum likelihood, and 
SAM = spectral angle mapper.  

 
 

Table 3 summarizes the accuracy assessment results for the six 
classification maps. Overall accuracy ranged from 94.5% for the two vegetation 
indices to 96.5% for the minimum distance classifier, indicating that 94.5% to 



 

96.5% of the image pixels were correctly identified in the classification maps. 
These results indicate that all six methods were accurate for indentifying root rot, 
though the minimum distance classifier provided the best result. Producer’s and 
user’s accuracy values ranged from 90.3% to 98.3% for the infected and 
noninfected classes. Producer's accuracy, a measure of omission error, indicates 
the probability of actual areas being correctly classified, while user's accuracy, a 
measure of commission error, indicates the probability that a category classified 
on the map actually represents that category on the ground. Based on the 
minimum distance method, the producer's accuracy for the infected class was 
97.7%, while the user's accuracy for this class was 94.4%. In other words, 97.7% 
of the root rot areas on the ground were correctly identified as root rot on the 
classification map, but only 94.4% of the areas called root rot on the classification 
map were actually root rot on the ground. 

 
 

Table 3. Accuracy assessment results for six classification maps generated from a 
four-band multispectral image of a 48.5-ha cotton root rot-infested cotton field 
near Edroy, TX in 2011. 

 
Method[a] Overall 

accuracy 
(%) 

Overall 
kappa 

Infected Noninfected 
PA UA PA UA 

SRI 
NDVI 
MD 
MAHD 
ML 
SAM 

94.5 
94.5 
96.5 
96.0 
95.5 
96.0 

0.889 
0.887 
0.929 
0.919 
0.908 
0.919 

97.7 
91.9 
97.7 
96.5 
91.9 
97.7 

90.3 
95.2 
94.4 
94.3 
97.5 
93.3 

92.1 
96.5 
95.6 
95.6 
98.3 
94.7 

98.1 
94.0 
98.2 
97.3 
94.1 
98.2 

 
[a] SRI = NIR / Red, NDVI = (NIR – Red) / (NIR + Red), MD = minimum 

distance, MAHD = Mahalanobis distance, ML = maximum likelihood, and 
SAM = spectral angle mapper.  

 
CONCLUSIONS 

 
Results from this study demonstrate that vegetation indices and supervised 

classifiers are effective tools for detecting cotton root rot from airborne 
multispectral imagery. Of the two vegetation indices and four classifiers 
examined in this study, the four classifiers appeared to be slightly better than the 
two vegetation indices. Although all four classifiers performed well, the minimum 
distance method provided the best result. More research is needed to evaluate the 
consistency and reliability of these methods and other spectral techniques for 
identifying root rot infection under diverse field and environmental conditions. 
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