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ABSTRACT 

 

Application of canopy sensors for nitrogen (N) fertilizer management for 
corn grain production in the Southeast US requires first the identification of the 
relationship between field-measured crop status  and sensor-measured canopy 
spectral reflectance. A nitrogen test was conducted between 2009 and 2011 at 
three research stations in Alabama to identify the best vegetation index and corn 
growth stage to assess differences in biomass and nitrogen uptake from corn 
receiving various N application rates. Nitrogen treatments included five N rates at 
0, 56, 112, 168, 224, 280 kg ha-1 applied at planting. At each location, data of 
SPAD, LAI, leaf N tissue, and canopy spectral reflectance were collected at V6, 
V8, V10 corn growth stages. A canonical correlation analysis was conducted to 
identify the vegetation indices best correlating with field-measured crop status 
variables and the type of relations existing between both groups of variables. 
Vegetation indices that include red-edge wavelength resulted in an overall higher 
correlation than others. Since higher correlations were consistent across all 
growth stages, (V6 to V10) VIs containing red-edge have the potential to be 
utilized in VRA-N. Results from this study will be utilized in developing an 
algorithm for variable rate application of nitrogen in the Alabama. 
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INTRODUCTION 

 

Nitrogen (N) is the main fertilizer in corn production since it has a high 
impact on production cost and yield (Stone et al., 2010). The use of nitrogen as an 
inorganic fertilizer has been subject of several studies for economical and 
environmental implications. Due to it dependency on fossil fuels cost, nitrogen 
fertilizer price increased by 130 percent from 2000 to 2007 (Huang, 2007).  

Concerning of the environmental impacts, an excessive use of nitrogen on 
agriculture has been raised. Raun and Johnson (1999) reported a 33 percent 
worldwide nitrogen use efficiency (NUE) in cereal grains showing the need for 
developing new management tools to reduce nitrogen loose in agriculture and 
increasing use efficiency. Based on those numbers, 67 percent of the N applied 
every year is been lost from the system implying a significant water 
contamination. 

Nitrogen fertilizer recommendations are specific to each zone or 
environment, and mainly depended on soil and weather conditions. For instance, 
northern states’ extension agencies like Iowa State University Extension (ISUE, 
1997) include in their nitrogen recommendations the use of soil N analysis, while 
states agencies in the southeast like Alabama Cooperative Extension Systems 
(ACES, 2012) do not. Recommendations for N side-dress uniform rate for corn 
grain production in Alabama are essentially focused on the average yield potential 
in the area of 135kg N ha-1 (ACES, 2012). This rate is modified by a factor based 
on N starter, preceding crop and irrigation, but not accounting for initial soil N. In 
Alabama, due to sandy soils and high rainfall there is not significant inorganic N 
available for the plant in the soil profile. 

Nitrogen use efficiency is highly dependent on weather and soil conditions 
(Raun and Johnson., 1999). Weather and soil temporal and spatial variability 
affect NUE from year to year (Hollinger and Hoeft., 1986). Thus, many efforts 
have been done to improve NUE, including N simulation models (Setiyono et al., 
2011) and remote sensing. Remote sensing is used in agriculture to assess crop 
status based on plant spectral reflectance (Seelan et al., 2003; Sullivan et al., 
2005; Miao et al., 2009; Thorp et al., 2008). Because remote sensors are able to 
assess N deficient plants lacking of greenness and biomass, several studies 
support the use of this technology for variable rate application of N (VRA-N) 
(Raun et al., 2002; Mullen et al., 2003; Teal et al., 2006; Solari et al., 2008; 
Kitchen et al., 2010; Solie et al., 2012). Furthermore, Roberts et al., (2010) 



 
 

reported N savings of 10 to 45 lb acre-1 resulting in profits from 10$ to 20$ acre-1 
using sensors for corn VRA-N. 

Variable rate application of nitrogen assisted by remote sensors requires the 
use of a vegetation index (VI) accurately assessing plant status (chlorophyll and 
biomass). A VI is a ratio or combination between different reflectance 
wavelengths in the electromagnetic spectrum. Normalized difference vegetation 
index (NDVI) is the normalized difference between near infrared (NIR) and red 
(Red) wavelength, and it is one of the most widely used VI for green biomass 
(NOAA, 2009). Spectral reflectance data in the form of VIs can be used to 
indirectly assess in-season yield potential and a specific N fertilizer rate to 
achieve the potential yield. Many sensors available in the market like 
GreenSeeker (Trimble.CO) and CropCircle (Holland Scientific.CO) calculate 
NDVI which is used in algorithms for VRA-N. However, other indices can also 
be calculated using data from independent wavelengths. 

Variable rate application nitrogen aided by remote sensors is usually 
conducted after V8 corn growth stage in the Midwest (Teal et al., 2006). Because 
delaying N application to V8 or later growth stages in Alabama may result on N 
stress due to sandy soils and high rainfall in the Coastal Plain region of the state, 
farmers in the Southeast tend to apply N as early as the V6 growth stage. A low 
correlation between NDVI at V6 corn growth stage and yield was reported in 
Oklahoma (Teal et al., 2006). Therefore, a VI with higher correlation is needed to 
assess corn yield potential early in the season. Thus, the aim of this project is to 
identify a VI that best correlate with field plant measurement to assess biomass 
and chlorophyll (Chl) content at early corn growth stages for VRA-N. 

 

Materials and methods 

 

A nitrogen study took place at three Auburn University Research Stations in 
Alabama in 2010 and 2011. The research stations were, Gulf Coast Research and 
Extension Center (GCS) in Fiarhope (30°32’09.21”N, 87°52’39.15”W, 34m from 
sea level), E.V. Smith Research Center (EVS) in Shorter (32°25’43.43”N, 
85°53’34.81”W, 69m from sea level) and Tennessee Valley Research and 
Extension Center (TVS) in Belle Mine (34°41’05.37N, 86°53’18.04”W, 187m 
from sea level). 

Irrigated test were located at EVS and TVS sites, and rainfall tests at GCS 
and EVS (Table 1). Soil descriptions for each experimental site are as follow: 
EVS irrigated, Coarse-loamy, siliceous, subactive, thermic Plinthic Paleudults; 
EVS rainfall, Fine-loamy, kaolinitic, thermic Typic Kanhapludults; TVS, Fine, 
kaolinitic, thermic Rhodic Paleudults; and GCS, Fine-loamy, siliceous, subactive, 
thermic Plinthic Paleudults. The experimental design was a randomized complete 
block design with six nitrogen (N) treatments (0, 56, 112, 168, 224, 280 kg ha-1) 



 
 

applied at planting. The corn hybrid was a Pioneer 31P42 for all sites. Plots size 
was 10 x 3.66m (four rows, 0.9 m between rows). 

 

 

 

Table1. Planting and sensing date by year and location. 

Year  Location  Platig Date  Sensing Date 

   V6 
 

V8 
 

V10 
2010 

 
EVS_BT 

 
31-Mar 

 
- 

 
18-May 

 
- 

  
EVS_ST* 

 
13-Apr 

 
18-May 

 
- 

 
- 

  
GCS 

 
29-Mar 

 
28-Apr 

 
10-May 

 
24-May 

  
TVS* 

 
2-Apr 

 
13-May 

 
- 

 
4-Jun 

2011   EVS*   7-Apr   -   23-May   3-Jun 
Irrigated (*) 

 

Data of spectral reflectance, chlorophyll (Chl) content and leaf area index 
(LAI) were collected at the V6, V8, and V10 corn growth stages. All readings 
were collected from the two middle rows of each plot. Data of Chl content and 
LAI were collected as ground truth measurement for plant status. Spectral 
reflectance data was measured using the GreenSeeker (Trimble, Sunnyvale, CA, 
USA) and CropCircle ACS-470 (Holland Scientific, Inc, Lincoln, NE) remote 
sensors. GreenSeeeker was calibrated to measure NDVI and CropCircle for Red 
(670nm), near infrared (NIR, 760nm), and Red-edge (RE, 730nm) wavelengths. 
The sensors were run through the plots mounted on a structure based on a tuned 
bicycle with two extra side-wheels and a mast where the sensors were placed. The 
bicycle was pulled and pushed at walking speed across the plots. Leaf chlorophyll 
content was assessed using a Chlorophyll Meter SPAD-502 (Minolta.CO).  Ten 
SPAD reading per plot consisting of three readings per leaf, were collected from 
the most recently collared leaf on each of those ten plants. Leaf area index was 
determined by collecting five readings per plot with the LAI-2200 plant canopy 
analyzer (LI-COR Biosciences). 

In addition to the NDVI collected by the GreenSeeker, ten extra vegetation 
indices were calculated using data from Crop Circle including NDVI, red-edge 
NDVI (NDRE), simple ratio (SR), simple ratio red-edge (SR[RE]), inverse simple 
ratio (ISR) inverse simple ratio red-edge (ISR-NDRE), Carter and Miller index 
(CSM), Carter and Miller red-edge index (CSM-RE), chlorophyll index red-edge 
(CI-RE), and Modified Datt index (Datt) (Table 2). Data was standardized to zero 
mean and one unit variance previous calculation of the vegetation indices. 

 

 



 
 

 

 

 

 

Table 2. Vegetation Indices (VIs).  
Name  Equation  Reference 

 NDVI  (NIR-
Red)/(NIR+Red) 

 Rouse et al. (1973), Tucker 
(1980) 

 NDRE   (NIR-RE)/(NIR+RE)  Gitelson, A.A. and M.N. 
Merlyak, (1994) 

 SR  NIR/Red  Jordan, (1969) 
 SR (RE)  NIR/Red edge  - 
 ISR  (1-NDVI)/(1+NDVI)  Gong et al., (2003) 
 ISR (NDRE)  (1-

NDRE)/(1+NDRE) 
 - 

 CSM                     Red/NIR  Carter and Miller, (1994) 
 CSM (RE)  RE/NIR  - 
 Cl (RE)  (NIR/RE)-1  Gitelson et al., (2003b) and 

Gitelson et al., (2005) 
Datt   (NIR-RE)/(NIR-Red)   Datt, (1999) 
Red= 670. RE=730. NIR=760  

 

A canonical correlation analysis (CCA) by year, location and growth stage 
was conducted to identify the VIs best correlating with field-measured crop status 
variables. The CCA examines the relationship between two set of variables or 
canonical variates (X and Y) which are the result of from the linear combination 
of original variables within each set. For every canonical variate, the loadings of 
each original represent their contribution or correlation to the canonical variate 
Plant status canonical variate (PSV) and vegetation index canonical variate (VIV) 
were designated as the canonical variates for the CCA. Plant status canonical 
variate results from the linear combination of ground truth measurement (LAI and 
SPAD) and VIV outcome from the linear combination of the eleven VIs. Wilkes-
Lambda statistic was used to assess the level of significance (P<0.05) of the 
canonical correlation between the variates variables in the CCA. 

 

RESULTS 

 

Canonical correlation analysis 



 
 

 

The CCA usually computes more than one pair of canonical varieties, 
however, for this study two pairs of canonical variates were generated with the 
first pair having the highest significant one (P<0.05, Wilks’ Lambda). Statistics 
associated with the CCA calculated by year-site-growth stage are shown in table 
2. Because for the second pair of canonical varieties, the correlation did not reach 
the desired level of statistical significance (<0.05), only results associated with the 
first pair are presented.  

The first pair of canonical variates (CC1), PSV and VIV canonical variates, 
was significant for all year-site-growth stages combinations with only one 
exception, (TVS-2010-V6) with p= 0.0687 (Table 3). Data from CC1 (eight site-
year-growth stages) suggest that components of the PSV canonical variate (Chl 
content and LAI [proxy for canopy biomass]) could be indirectly assessed through 
the use of VIs. 

 

Table 3. Canonical Correlation by year, site and growth stage. 
 
Year 

 
Site 

 
GS 

 
Canonical Correlation 

 
Wilk's Lambda 

      
CC1 Pr>F CC2 Pr>F 

 
Pr>F 

2010 
 

EVS 
 

V8 
 

0.910 0.004 0.643 0.350 
 

0.0042 

  
EVS* 

 
V6 

 
0.907 0.047 0.821 0.162 

 
0.0472 

  
GCS 

 
V6 

 
0.948 0.000 0.714 0.157 

 
0.0001 

    
V8 

 
0.879 0.033 0.555 0.627 

 
0.0331 

    
V10 0.950 0.001 0.857 0.048 

 
0.0009 

  
TVS* 

 
V6 

 
0.861 0.069 0.710 0.295 

 
0.0687 

    
V10 0.980 <0.0001 0.727 0.247 

 
<0.0001 

2011 
 

EVS* 
 

V8 
 

0.933 <0.0001 0.506 0.499 
 

<0.0001 
        V10 0.921 <0.0001 0.635 0.011   <0.0001 
*Irrigated. CC=canonical correlation. GS= Growth stage 

 

Relationship between PSV and field measured variables of SPAD and LAI 

 

The loadings of LAI and SPAD, used to evaluate the contribution or 
correlation of those variables to the canonical variate PSV are reported in Table 4. 
The higher loading of the SPAD variable (proxy for Chlorophyll content) 
indicated a higher contribution/correlation than LAI with the PSV canonical 
variate at all corn growth stages. Moreover, SPAD correlations were higher than 
0.95 for all site-years at the V6 growth stage suggesting the higher dependency of 
early growth stages measurements on Chl content. In contrast, LAI seemed to 
contribute with a very low weight (<0.2 correlation) to the PSV canonical variates 



 
 

calculated from the data collected at the V6 growth stage in 2010. However, as 
the corn growth progresses in stages up to the V10 stage there is a significant 
increase in correlation of LAI with correlation coefficients of 0.42 and 0.62 for 
the GCS and TVS locations in 2010, respectively. For EVS location in 2011, a 
slightly negative increase in correlation of (-0.23) was observed. The results of 
increasing LAI correlations with growth stage for the various PSV canonical 
variates were expected since the plants have very low biomass at early corn 
growth stages. Leaf area index become important at later corn growth stages when 
the area between rows is mostly covered by leaves. In summary, because sensor 
measurements are more affected by Chl content than LAI, VIs exhibiting higher 
correlations with PSV are better indicators to assess Chl content variability for 
VRA-N. 

Table 4. Canonical Correlation between original variables and PSV by year-site-
growth stage 

  2010 
 

2011 

 
TVS 

 
EVS* 

 

EV
S 

 
GCS 

 
EVS* 

 
V6 V10 

 
V6 

 
V8 

 
V6 V8 

V1
0 

 
V8 V10 

 

PV
S PVS 

 
PVS 

 
PVS 

 

PV
S 

PV
S 

PV
S 

 
PVS PVS 

Correlation between field-measured plant status and Plant status cononical 
variate. 

SPAD 
(Chl) 

0.9
8 0.98  0.83  1.00  

1.0
0 

0.9
7 

1.0
0  0.97 0.99 

LAI 0.0
7 0.62  -0.2  0.73  

0.0
8 

0.7
3 

0.4
6  0.12 -0.2 

Correlation between vegetation indices and Plant Status canonical variate. 
GS_ 

NDVI - 0.55  0.23  0.87  
0.6
8 

0.6
5 

0.8
2  0.7 0.7 

NDRE 0.7
3 0.64  0.42  0.81  

0.7
7 0.6 0.9

1  0.82 0.89 

NDVI 0.6
8 0.34  0.36  0.83  

0.7
1 

0.6
3 

0.2
6  0.7 0.86 

SR 0.6
7 0.38  0.37  0.77  0.7 0.6

1 0.7  0.69 0.84 

SR (RE) 0.7
3 0.69  0.42  0.8  

0.7
7 

0.5
9 

0.9
1  0.8 0.89 

ISR -0.7 -0.4  -0.4  -0.8  -0.7 -0.6 -0.2  -0.7 -0.9 
SR 

(NDRE) -0.7 -0.6  -0.4  -0.8  -0.8 -0.6 -0.9  -0.8 -0.9 

CSM -0.7 -0.4  -0.4  -0.8  -0.7 -0.6 -0.7  -0.7 -0.9 



 
 

CSM 
(RE) -0.7 -0.6  -0.4  -0.8  -0.8 -0.6 -0.9  -0.8 -0.9 

CI (RE) 0.7
3 0.69  0.42  0.8  

0.7
7 

0.5
9 

0.9
1  0.8 0.89 

Datt 0.6
3 0.23  0.28  0.77  

0.8
5 

0.5
7 

0.8
8  0.89 0.88 

*Irrigated. 
             

Relationship between PSV and VIS 

Understanding the correlations between each VI and the PSV canonical 
variate is crucial to identify the VIs better explaining the variability in Chl content 
and biomass; therefore, it could be used for indirect assessment of plant status. 
Results from the correlation between each VI and PSV are shown in table 3. By 
looking at these results it is possible to evaluate the performance of each VI in 
assessing biomass and Chl content.  

An overall trend in correlation between VI and PSV is shown across growth 
stages in table 3. There is a significant increase in correlation between each VIs 
and PSV from V6 to V10 corn growth stage. These results were expected since 
plants do not have enough leaves to cover the whole sensing area at early growth 
stages and sensor readings are ineffective due to bare soil reflectance. In contrast, 
at V10 most of the soil area between plants in the row and between rows is 
covered by leaves or plant biomass. 

Correlations range from 0.23 to 0.91 at V6 and V10 respectively. The higher 
correlations were found in VIs containing the red edge (RE) wavelength with 
significant differences at early growth stages. For instance, in six from eight year-
site-growth stage NDRE was higher than GS-NDVI. Differences in benefit to 
NDRE at V6 were 0.19 and 0.09 in EVS*-2010 and GCS-2010 respectively. At 
V8 only one (EVS*-2011 with 0.12 difference) of three year-site-growth stage 
resulted in higher NDRE. On the other two year-site-growth stage remaining at 
V8, higher NDVI correlations were found. Comparing the same indices at V10, 
NDRE show a better correlation in TVS-2010, GCS-2010 and EVS-2011 with 
0.3, 0.65 and 0.03 correlation difference respectively. Results show that NDRE 
tend to have higher correlations at V6 and also that those high correlations had 
certain consistency over growth stages until the V10. Other indices containing 
red-edge like SR-RE, ISR-NDRE, CSM-RE, and CI-RE resulted on similar 
patterns yielding higher correlations that GS-NDVI in most growth stages. 
Observed results suggest that VIs containing red edge seems to be more sensitive 
to LAI and SPAD. At V8 non mayor differences were found in rainfall 
experiment at EVS and GCS 2010. Nevertheless, differences in 0.1 unit 
correlation show a better performance of RE VIs in EVS*-2011 irrigated 
experiment. Observed results suggest that VIs containing red edge seems to be 
more sensitive to LAI and SPAD in all corn growth stages.  

 



 
 

 

CONCLUSION 

 

Ten vegetation indices were evaluated for their ability to indirectly assess 
biomass and Chl content. The use of CCA allowed the combination of multiple 
variables into canonical variates to evaluate the correlation between PSV and 
VIV. Also PSV permitted the combination of ground truth measurement which 
was very important to understand plant status using a single variable. High 
correlations were found between canonical variates suggesting that VIs were 
successful assessing biomass and Chl content. Also, correlations between each 
independent VI and PSV were useful to found the VIs better performing at early 
growth stages. Vegetation indices that include red-edge wavelength resulted in an 
overall higher correlation than others. Since higher correlations were consistent 
across all growth stages, (V6 to V10) VIs containing red-edge have the potential 
to be utilized in VRA-N. 
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