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ABSTRACT 
      

Hyperspectral (HS) remote sensing is a constantly developing field. New 
remote sensing applications of different fields constantly appear. The possibility 
of acquisition information about an object without physical contact is spanning 
new opportunities in many fields and for precision agricultural in particular. 
These opportunities demand constant improvement and development of new 
analysis approaches and algorithms, which will exploit the advantages of HS 
imaging. Though hyperspectral imaging has been transformed in the last 30 years, 
still most available HS data processing algorithms analyze the data based on the 
spectral information exclusively and do not treat the data as an image. As for the 
methods that use spatial and spectral information, most of them use the 
information serially, as a two-step processing technique. The first processing steps 
focus on the spectral information, and the second step focus on the spatial one. In 
this paper we present a classification method which uses both spectral and spatial 
information simultaneously. A comparison between classification results of 
different processing approaches is presented. A hyper spectral image of an 
experimental field of potatoes, where five different levels of fertilizers were 
applied, was used to test and compare the algorithms’ performance. Three pre-
processing models were applied on the hyperspectral image: calculation of a 
spectral index, principle component analysis and the full HS image. It was found 
that the principle components and the whole spectra performed better than the 
spectral index. Furthermore, from the comparison of the classification results, the 
new approach yielded better classification results than other similar methods 
reported in the literature.   
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INTRODUCTION 
Modern agricultural crop’s yield relies on close monitoring and adequate 

treatment. Efficient recourses management can result in increased yield and 
prevent environmental damage. There are many examples for the importance of 
close monitoring, such as in nitrogen supply. Nitrogen is one of the most 
important ingredients in fertilization, which affect the chlorophyll level of the 
plant. When nitrogen supply surpasses vegetation’s nutritional needs, the excess is 
eliminated by runoff and water infiltration leading to pollution of aquatic 
ecosystems (i.e., eutrophication) (Haboudane et al.,2002,Cohen et al.,2010). This 
nitrogen loss represents also an economic loss for the farmers. However, 
inappropriate reduction of nitrogen supply could result in reduced yields and lead 
to substantial yield losses. The common monitoring tools used nowadays are 
based on point sampling of biophysical and biochemical properties of the crop. 
When dealing with large commercial fields, point sampling does not represent the 
spatial variability.  

Hyperspectral imaging plays a principal role in the remote sensing world for 
two decades (Goetz et al.,1985). Hyperspectral datasets unique form adds new 
challenges to basic computer vision problems, such as segmentation and 
classification. One obstacle set by hyperspectral imaging is its data size. 
Hyperspectral image is usually built from hundreds of images, each represents 
spectrum bandwidth. This enormous data size results in a long computational 
processing time. Different solutions were proposed in order to use the 
hyperspectral data. One is to use spectral indices, which are combined from a 
small number of wavelengths designed to identify certain reaction (Li et al.,2010). 
Second is the use of mathematical manipulations in order to reduce the 
hyperspectral image dimension with minimum loss of information. The common 
mathematical tool is principle component analysis (PCA). There are other 
methods to confront the dimensionality problem, such as analyzing the full 
hyperspectral image with the use of parallel computing, which can excel the 
running time. No matter what portion of the hyperspectral are used, most 
available hyperspectral data processing techniques focus on analyzing the spectral 
information without incorporating spatial information (Plaza et al.,2009). 
Hyperspectral data are usually not treated and processed as images, but as 
unordered listings of spectral measurements with no spatial arrangement 
(Tadjudin and Landgrebe,1998). The importance of analyzing both spectral and 
spatial information has been identified and there were some researches done in 
this direction but they were applied mostly for land-use classification (Plaza et 
al.,2009). Precision agriculture can benefit from methodologies that utilize the 
spectral as well as the spatial information in hyperspectral images as a tool to 
delineate management zones in the field scale.  One common approach utilizing 
the spatial information is to perform two step processing. The first step is a 
spectral based analysis, and the second is refinement of the previous step results 
using spatial information (Landgrebe,2003). The objective of this study was to 
explore the contribution of the spatial information to the delineation of reliable 
management zones based on aerial hyperspectral images. For that a new 
classification method that uses the spatial and spectral information simultaneously 



is introduced for hyperspectral classification of nitrogen levels. In addition an 
existing two-step analysis, introduced by Lark (1998), was adjusted and applied 
for hyperspectral analysis. Furthermore, the superiority of the complete spectral 
information over spectral indices was presented for the same purpose.    

DATA SET AND DATA PROCESSING 
To evaluate the performance of the classification methods for agricultural 

applications a hyperspectral image of potato field, which was under different 
nitrogen treatments, was used. The hyperspectral image was acquired on May 25, 
2007 using a push-broom AISA system in the range of 400-1000 nm, with 420 
bands with spectral resolution of 1.3 nm. The image was acquired from a 500 
meters height and has 1 m spatial resolution. Pre-processing of the image included 
selection of every second band of the original 420 bands and smoothing of the 
210-bands spectra of the new cube, with a 15-points window (Alchanatis and 
Cohen,2011). 

Different types of hyperspectral data were used: TCARI/OSAVI spectral index 
which was developed to estimate chlorophyll level in the field (Haboudane et 
al.,2002), principle components of the hyperspectral image (PCA) (Trevor. Hastie 
et al.,2009), which is very often used for dimensionality reduction of a 
hyperspectral image, and the raw data of the hyperspectral image. Each of the 
data type was classified using fuzzy C-means (FCM), spatially coherent regions 
multi-variate classification (SCR) developed by (Lark,1998) and the RDP-BD 
classification which uses RDP-BD segmentation algorithm (Levi et al.,2011).  

Figure 1 presents a combination of the bands 750 nm (IR), 670 nm (Red) and 
550 nm (Green) of the experimental plot overlaid by the borders of the nitrogen 
treatments. Treatment denoted 100% in the figure was applied with 400 kg ha-1 of 
nitrogen. All other nitrogen treatments were applied with relative amounts to their 
percentage. More details on the experiment can be found in (Cohen et al.,2010).  

 

 
Figure 1.  Combination of IR (750 nm), Red (670 nm) and Green (550 nm) 
bands of the experimental plot overlaid by the borders of the N treatments. 
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CLASSIFICATION METHODS 
In this research a comparison between three different classification methods 

was done. The classification methods were differed in respect to their spatial and 
spectral information fusion. The first method used is Fuzzy C-means (FCM), 
which only uses spectral information. The next two methods are based on the 
FCM but differ in their spatial and spectral information fusion. The second 
method used is the spatially coherent regions generation (SCR) developed by 
Lark in (Lark,1998), which uses the spectral and spatial information serially. The 
SCR algorithm produces preliminary classification according to the spectral 
information and, as a second step, updates the classification in respect to the 
spatial information. The last method used is RDP-BD algorithm which uses the 
spatial and spectral information simultaneously for segmentation, which is then 
classified by FCM.  

Fuzzy C-mean Classification Algorithm 
The FCM (Bezdek and Ehrlich,1984) is a soft clustering algorithm, where 

each object belongs to a cluster in a certain degree. As a first step, for each object, 
the distances to all the centers of groups are calculated. The object is classified 
according to the shortest distance. As a second step the centers of the groups are 
updated according to the objects that belong to them. These two steps repeat till 
there is no change in the classification. 

In order to use the FCM the user should set in advance the number of 
clusters. In our experiment the image was classified into three groups: low, 
medium and high nitrogen level.  

Spatially Coherent Regions Generation 
The classification algorithm proposed by Lark (Lark and Stafford,1997 

,Lark,1998) is based on the FCM algorithm. Lark’s classification is performed in 
two steps: FCM classification and spatial smoothing. Based on the FCM 
classification results, a classification vector for each voxel in the image is 
available. The classification vector consists of a fitting degree to each cluster, 
where the classification is based exclusively on the spectral information. The 
smoothing step is done by updating the classification vector of each voxel 
according to the classification vector of its neighbors. The classification vector is 
updated by calculating a weighted average according to the neighbors’ weights, 
which are complement to 1, e.g. if the self-vector is set with 0.2 the neighboring 
vector is set with 0.8. Decrease in the weight of the self-vector increase the 
smoothing magnitude. In this study two weights were empirically set to the self 
vector: 0.2 and 0.05. The smoothing radius is set according to the variogram range 
of the image. The range of the variogram calculated for the experimental site 
using Geostatistical analysis wizard of ArcGIS 10 (ESRI, Ltd.) and was found to 
be 18 m (coincided with the treatments width). The SCR algorithm was not 
designed originally for hyperspectral images but for multi-year yield data with 
few variants (Lark, 1998). This is the first attempt to use it for the classification of 
a hyperspectral image.  



RDP-BD classification 
The RDP-BD classification is based on two steps. The first step is RDP-BD 

segmentation, where the RDP-BD algorithm uses both the spatial and spectral 
information (Levi et al.,2011). The second step is performing FCM classification 
over the segmentation results. In order to use the algorithm, one should set the 
value of the Penalty Weight (PW) of the target function, which affects the 
segmentation results. As the PW increases the number of segments decreases and 
the resulted image is smoother with bigger variance. 

 

COMPARISON METHODS 
To evaluate the performance of the classification methods a reference map was 

built (Figure 2). The reference map was built by manually classify the image into 
four categories: soil, and low, medium and high nitrogen levels. The soil was 
excluded manually and the classification into nitrogen levels was done according 
to prior knowledge of the treatments locations with complementary visual 
inspection. Accordingly, all the three classification methods (FCM, SCR, and 
RDP-BD) were set to detect three classes and the classes were matched manually 
to nitrogen levels. Confusion matrices were calculated by overlaying the reference 
map and the classified images produced by each classification method. Based on 
the confusion matrices overall accuracy and kappa coefficient (Cohen,1968) were 
calculated and compared.  

In this work two different examinations were made. The first comparison was 
related to the different data sets: raw hyperspectral image (HS-210), 3-PCs of the 
hyperspectral image and TCARI/OSAVI spectral index (TCOSI). The second 
comparison was related to the different classification methods: spectral based 
classification (FCM) spatially smoothed spectral classification (SCR) and 
simultaneous spectral and spatial segmentation and FCM classification (RDP-
BD).  

RESULTS 
Figure 2 illustrates the classification results of the different methods and data 

bases. The different colors represent different treatment classes: high nitrogen 
(green), medium nitrogen level (orange), low nitrogen level (dark red) and soil 
(blue) which was extracted manually. For the SCR classification result with a 
weight of 0.05 is presented and for the RDP-BD the 15&140 PWs combination is 
presented. Both represent the best results of each method. A visual comparison 
with the reference map leads to two main insights. First, the TCOSI provides 
inferior accuracy compared with the 3-PCs and the HS-210. There is a big 
difference between the reference map and the TCOSI’s classification. For 
example, all 3 classification methods, which were based on the TCOSI, classified 
the high nitrogen treatment to the left of the map as medium to low nitrogen 
levels. The second main observation is that the integration of spatial analysis with 
the spectral classification divided the experimental field into big segments, each 
associated with one class. Except for the TCOSI result, in the two complete 



hyperspectral data results, the segments and their associated classes are with 
general accordance to the reference map (qualitative measures are given further in 
this section). The only difference between the two methods is their borders 
feature. The SCR provides smooth borders while the RDP-BD divides the images 
with straight lines.  

 
Figure 2.  A reference map of nitrogen levels and classification results of the 

different data bases and methods 
 

Figure 3 illustrates the classification accuracy level of each classification 
method and data set. Each image in Figure 3 is the matching result between the 
classified image and the reference map. Black represents exact match, meaning 
that the classification is accurate. Gray represent a first order mismatch, meaning 
that there is one class difference between the reference map and the results, i.e. 
high or low nitrogen levels were classified as medium level. The white color 
represents a second order mismatch (considerable mistake), i.e. high and low 
nitrogen levels were switched. In overall, there are few second order mismatches 
mainly in the classifications which were based on TCOSI.  

 



 
Figure 3.  Classification match and first and second mismatches compared to 

the reference map  
 

Beyond the visual inspection the overall accuracy and kappa coefficients 
provide quantitative measures for the classifications performance (Table 1). For 
SCR and RDP-BD accuracy and kappa measures are provided to the best results. 
The 3-PC and HS-210 resulted in better accuracies than the TCOSI using all three 
classification methods. Kappa (k) coefficient indicates for poor classification 
performance obtained by the TCOSI (less than 0.4) (Landis and Koch,1977). The 
performance of other two data sets is moderate for the FCM (k=0.4-0.6) and 
substantial (k>0.6) (Landis and Koch,1977). The SCR and RDP-BD present 
comparable results.  

 
Table 1.  Overall accuracy of the three classification methods using the three 
different data-sets; *OA stands for overall accuracy 

  TCOSI 3-PC HS-210 
 OA* Kappa OA Kappa OA Kappa 
Fuzzy C-mean 0.59 0.25 0.71 0.54 0.71 0.54 
SCR 0.57 0.33 0.77 0.63 0.77 0.63 
RDP-BD 0.55 0.19 0.78 0.63 0.78 0.64 
Average 0.57 0.26 0.75 0.60 0.75 0.60 

 

An exhaustive examination of various PWs combinations used to apply the 
RDP-BD classification shows (Figure 4) that out of the 6 combinations, the result 



of 5&50 combination is much lower and it might be explained by its lower PWs. 
All other combinations provided similar results. The SCR is also sensitive to the 
weight of the self-vector which controls the smoothing magnitude. When SCR 
was applied with a weight of 0.2 the classification results was very similar to the 
FCM (Overall accuracy of 0.73 vs. FCM overall accuracy of 0.71) and the 
smoothing effect was negligible (data not shown).   

 

 
Figure 4.  Kappa coefficient for the 6 PWs combinations of the RDP-BD 

 

Further examination of the classification performance of the SCR and the 
RDP-BD was conducted through the calculation of under- and over-estimation of 
individual nitrogen level (HS-210; Figure 5). Despite their comparable overall 
accuracy and kappa they are different in classification of individual classes. The 
SCR suffers from higher overestimation especially for the low and high nitrogen 
levels and the RPD-BD suffers from more underestimation of these two levels. In 
general these opposite errors entail similar implications. Overestimation of low 
nitrogen level and underestimation of high level may cause to suboptimal 
application of nitrogen and yield loess while the opposite errors cause to over 
application of nitrogen, damage to the yield quality (less dry matter in the tubers) 
and nitrogen leaching to the soil.  
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Figure 5.  Overestimation (left) and underestimation (right) of individual 

nitrogen levels using the SCR and RDP-BD based on HS-210 
 

DISCUSSIONS AND FUTURE DIRECTIONS 
In this work the effect of the hyperspectral data set and the potential 

contribution of the spatial analysis on nitrogen level classification performance 
were examined. Comparison between the different data sets has shown that the 
TCOSI provided the poorest performance (Table 1). The 3-PC and the complete 
spectral curve (HS-210) demonstrated comparable and significantly better 
performance. The TCOSI is a spectral index which is based only on four specific 
bands while the 3-PC and the HS-210 use the whole spectral range. These results 
correspond with other studies that have shown the superiority of the whole 
spectral range upon using spectral indices or few selected bands in evaluating 
LAI, biomass, water content and chlorophyll and nitrogen content (Bonfil et al., 
2005; Cohen et al., 2010; Kempeneers et al., 2005; Lee et al., 2004; Pimstein et 
al., 2007). A closer look at bands' weights composing the 2 first PCs further 
supports this assumption as it shows that the dominant bands are spread over the 
entire spectrum (Figure 6). In this study a simple classification was used. Better 
classification can be improved by using chemometric methods like the partial 
least square regression and wavelet analysis (Alchanatis and Cohen, 2011) but an 
appropriate incorporation of these methods to classify a hyperspectral image is 
still a challenge.     

 



 
Figure 6.  Weights of each spectrum band when composing the two main 

PCs. 
 

All of the studies that analyzed continuous spectral range for biophysical and 
biochemical properties of the canopy used point spectral measurements and not 
hyperspectral images (Alchanatis and Cohen,2011). In this study the contribution 
of spatial analysis to spectral analysis of continuous spectrum of canopy extracted 
from a hyperspectral image was exemplified. Spatial analysis assists with 
delineating homogeneous zones in a field and classifying them according to their 
biophysical/biochemical properties. Three levels of incorporation of spatial 
analysis were compared: no spatial analysis, spatial analysis for retrospective 
smoothing of spectral classification and a simultaneous spectral-spatial 
segmentation. Classification measures per-pixel showed an improvement of the 
spectral and spatial analysis over the spectral classification (Table 1). But the 
more pronounced contribution was segmentation of the images into homogeneous 
zones which fit to the desire to divide a field into homogeneous zones for variable 
rate fertilization. The comparison between the SCR and the RPD-BD did not 
reveal an advantage of the simultaneous integration of the spectral and spatial 
information over the two step analysis. 

Both methodologies are sensitive to the weights that control the segmentation 
or smoothing magnitude. Since there is no automatic way to set the optimal 
weights for SCR and PWs for the RPD-BD appropriate application would require 
iterative operations. For the RPD-BD the variance change rate was successfully 
used for optimal selection of PWs. A similar approach might be used for the SCR.  

The spatial analysis contribution to the division of the field according to 
nitrogen levels was proved based on a small experimental field. In the future it 
should be examined for other biophysical and biochemical properties like biomass 
and water content and for a field scale. These methodologies would assist with 
testing the efficiency of variable rate nitrogen fertilization as on one hand they 



utilize the informative spectral data to properly classify nitrogen level in the pixel 
scale and on the other hand delineate management zones in the field scale.     
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