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ABSTRACT

Producing high resolution maps of water use efficiency (crop yield per unit of water consumption; WUE) for precision crop management is limited by our ability to readily produce maps of soil moisture content. On-the-go grain yield monitors or biomass scans can provide a spatial measure of crop productivity, the numerator of a WUE ratio but water use, the denominator, is limited by physical practicalities to a few single-point measures. Volumetric moisture content inferred from an EM38 electromagnetic induction (EMI) survey, and biomass evolution (Z31-43) derived from optical reflectance measurements were combined for a wheat crop in order to generate a map of water use efficiency (t/ha/mm). Taken over the entire field, the change in soil moisture (mm) was found to explain 38% of the variance in the change in biomass (t/ha). The implications for using multi-temporal EMI surveys in combination with yield maps to produce a spatial measure of water use efficiency are discussed.
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INTRODUCTION

     Recent and widespread droughts across the cropping regions of Australia have again focused attention on finding ways to maximise the storage and efficient use of soil moisture. Responding to variations in plant available moisture at the sub-field scale could improve water use efficiency but a rapid method of measuring site-specific soil moisture status is needed.
     We rekindle the idea of using apparent soil electrical conductivity (ECa) from electromagnetic induction (EMI) surveys as a surrogate for soil moisture content (Rhoades et al., 1976; Kachanoski et al., 1988; Huth and Poulton, 2007) and apply this to a non-saline, deep, Vertosol soil typical of large tracts of cropping in western New South Wales and south-eastern Queensland, Australia. Hossain et al. (2010) and Padhi and Misra (2011) have correlated ECa to nearby neutron moisture probe measurements in similar Vertosols. We extend this by attempting to produce a water use efficiency map based on the observed change in soil moisture content estimated from EMI surveys, and the change in above ground crop biomass (productivity) derived from plant canopy reflectance surveys using proximal optical sensors.
     For heavy clay soils, moisture seldom reliably dominates the site-specific measurement of ECa from an EMI survey instrument, such as the EM38 (Geonics®). When not confounded by salinity, cation exchange capacity (CEC) and clay content will contribute the greatest to the ECa (Lesch et al., 2005; Sudduth et al., 2001). However, soil moisture is likely to dominate a change in ECa (∆ECa) between successive measurements at a particular site because CEC and clay content could be expected to remain constant. Therefore, EMI surveys done at strategic stages in the growing season could potentially be a useful basis for calculating spatial water use efficiency.

METHODS

Site and Surveys

An 18 ha field of black Vertosol was selected at McMaster Research Station (University of New England, Rural Properties) approximately 35 km NNW of the township of Warialda (New South Wales, Australia). A preliminary EMI survey was conducted on the 15th June between sowing and emergence of wheat (Triticum aestivum L. var. Gregory). Sixty-five kg/ha anhydrous ammonia and 50 kg/ha zinc-mono ammonium phosphate was incorporated prior to sowing. On the 4th Aug, when the crop had reached stage Z31 (first node) the first of two ECa surveys was performed using a Geonics® EM38 in the vertical mode towed behind an all-terrain vehicle on a 1 cm thick rubber mat. ECa readings were logged concurrently with DGPS positions (Trimble® TSCe Ranger) and two sets of optical reflectance readings (CropCircle® ‘red sensor’ comprising 650 and 770 nm wavelength sources and detectors (R650 & R770) and ‘amber sensor’ comprising 550 and 770 nm wavelength sources and detectors (R550 & R770). The transect interval was 25 m, the logging interval was 1 per second, and the speed was approximately 10 km/h. The second ECa and canopy reflectance survey was performed on the 17th September when the crop had reached stage Z43 (flag leaf). No rainfall was recorded at the site over this 6 week period.

NDVI to Crop Biomass Calibration

     After each survey, eight sites across the field were selected to represent the range of crop growth. Three randomly selected 1 m2 areas of crop at each site were then scanned using a handheld variant of the same two CropCircle® sensors (namely red; R650 & R770 and ‘amber’ R590 & R770). After scanning, all the biomass to ground level was cut and bagged. In the laboratory the biomass samples (all green) were dried at 80oC and weighed. The normalised difference vegetation index for each of the paired wavelengths (NDVIred and NDVIamber) was calculated from every instantaneous set of reflectance measurements using NDVI = [(R770 – R650 or 590)/(R770 + R650 or 590)] (Rouse et al., 1974). Exponential curves were fitted to determine the correlation between biomass and NDVIred or NDVI amber. NDVIred was used to calibrate the first survey and NDVIamber for the second. Kriging software (Vesper®) (Minasny et al., 1999) was used to generate high resolution (10 m2 pixel) biomass maps for the first and second surveys with a common grid. ∆Biomass between Z31 and Z43 was calculated by subtracting the first (Z31) interpolated survey data from the second (Z43).

ECa to VMC Calibration

     Soil cores (1 m long x 38 mm dia.) were extracted from 5 sites following each survey. The sites were selected to represent a broad range of ECa from the preliminary survey (15th June). Each core was divided into 20 cm sections and sealed in canisters for later weighing, before and after drying at 110oC. The volumetric moisture content (VMC) (m3 moisture /m3 soil) was calculated from the loss of mass during drying (mass of water expressed as a volume) to the volume of the core (20 cm x core cross-sectional area) adjusted for swelling and shrinkage with water content (Yule, 1984). Site-specific ECa readings in vertical mode were taken at each coring site prior to core removal. Coring after the second survey was done at the same DGPS locations selected for the first survey. Following Hossain et al. (2010), linear regressions were used to correlate ∆ECa to ∆VMC. The same Kriging software was used to generate high resolution (10 m2 pixel) VMC maps for the first and second surveys with the same common grid as for the biomass data. ∆VMC was calculated by subtracting the first interpolated survey data from the second.

Data Analysis

     Kriging software (Vesper®) was used to generate high resolution (10 m2 pixel) biomass and VMC maps for the first and second surveys. ∆Biomass and ∆VMC were calculated by taking the first from the second transects measurements determined for each 10 m2 pixel in the Kriged map. ECa and NDVI readings for the calibrations with VMC and biomass were independent of the survey data, hence did not involve Kriging.

RESULTS

     The linear correlation between ∆ECa and ∆VMC (R2 = 0.58) was used to generate Fig. 1 which shows the spatial ∆VMC (mm) for the 18 ha field at McMaster Research Station over the six weeks of crop growth.
     The exponential correlations between CropCircle® NDVI and green biomass are displayed in Fig. 2. These were used to calibrate NDVI to biomass (tonnes/ha) and calculate the change in biomass (∆biomass) from survey one to two (Fig. 3).
     Fig. 4 illustrates the ratio of ∆VMC to ∆biomass, to produce a map of spatial water use efficiency. Fig.5 shows the correlation between ∆biomass and water use calculated from the pixel values generated by Kriging to produce ∆VMC and ∆biomass maps (Fig. 1 and 3).
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Fig. 1.  Spatial change in volumetric moisture content (∆VMC- mm) for six weeks of growth from Z31 to Z43 for wheat at McMaster Research Station.
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Fig. 2.  The correlation between NDVI and biomass using NDVIred (♦ 650 & 770 nm; R2 = 0.86) and NDVIamber (♦ 550 & 770 nm; R2 = 0.83) as derived from the CropCircle® optical sensors. Data points derived from both Z31 and Z43 sampling.
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Fig. 3.  Spatial change in green biomass (∆biomass- tonnes/ha) for six weeks of growth from Z31 to Z43 for wheat at McMaster Research Station.
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Fig. 4.  Spatial water use efficiency for six weeks of growth from Z31 to Z43 for wheat at McMaster Research Station.
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Fig. 5.  Linear correlation between the change in soil moisture (∆VMC) and ∆biomass (R2 = 0. 38) generated from the common grid values that produced Fig. 1 and 3.

DISCUSSION

     Single point measures of soil moisture content from neutron, capacitance or resistance based moisture probes cannot provide measurements for enough locations to generate a high-resolution spatial measure of soil moisture. Using ECa as a surrogate has suggested a three-fold and patchy difference in crop moisture use across the field (Fig. 1). This alone suggests that different sections of the field are behaving differently and might benefit from site-specific management. Our efforts to correlate ECa to moisture were not extensive and were not intended to reaffirm the correlations from other research (eg. Hossain et al., 2010; Padhi and Misra 2011) but gave our estimates comprehendible units. The relative differences are probably more reliable than the absolute estimates.
     If the differences in water use reflect fixed insurmountable differences in potential productivity, for example subsoil constraints like high salinity (Dang et al. 2011) or simply lower initial water status, the poorer areas could be sown at rates that match their potential, even zero sowing if uneconomic production is predicted. But perhaps the poorer water use areas are reflecting poorer nutrient levels. In this case variable rate in-crop fertilisers could be expected to boost production.
    Using NDVI as a surrogate for biomass provided a reliable calibration and indicated a patchy and three-fold difference in crop growth across this field (Fig. 3). This also suggests that site-specific management could improve the efficiency of crop production in comparison to even applications of inputs. Using both NDVIred and NDVIamber provided the opportunity for extended dynamic range of sensor performance at the higher biomass levels encountered.
     Putting water use and biomass together to generate a map of water use efficiency has produced an interesting result; namely it has evened out the individual spatial differences (Fig. 4). In other words, the availability of water in the field has largely affected the evolution of biomass; with exception of small areas of very high water use efficiency evident around the perimeter. These correspond with areas that produced very low biomass. The absolute moisture content could help to explain the WUE. Including strategic EMI surveys when the soil is very dry and wet to determine the full and wilting points respectively would allow estimates of absolute soil moisture content from site-specific ECa readings. Note that care is also needed when interpreting these areas as high crop production because small plants, albeit making the most of what might be low-moisture availability, might not reach harvest.
    As expected, biomass production correlated with water use, but the change in water content only explained 38% of the variance (Fig. 5). A large number of other factors, including measurement errors explain the residuals. Nonetheless, the question as to whether 38% is some surrogate measure of water use efficiency, in terms of how much change in biomass is explained by change in VMC, remains and is worthy of further investigation. Real differences in cropping potential should be explored where the surveys highlight differences.  There are also steps in the data collection and analysis that could be improved to minimise errors. The transects followed in the second survey were the same as for the first. Beyond using the same transect map the vehicle tracks remained visible from the first survey to be followed in the second. However, small differences in tracking of the EM38 and NDVI sensors could be explored to make sure they correspond to exactly the same field positions. The importance of these factors depends on the rate of change of real field values relative to the accuracy of the GPS.
    A spatial measure of water use efficiency could be useful at the research level and for producers. Plant breeders might be able to screen larger areas of crop for genotypes with better WUE. Producers would be able to identify practices that generally give higher WUE for their soil, crop types and seasonal variation. Plant available moisture is the major determinant of crop yields in Australia. Revealing the extent to which water use efficiency varies between practices for specific farming regions is the next step towards identifying practices that lead to greater efficiencies.
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